BACCALAUREAT TECHNOLOGIQUE

SUJET SORTI

Session 2006

PHYSIQUE APPLIQUÉE

Série : Sciences et Technologies industrielles

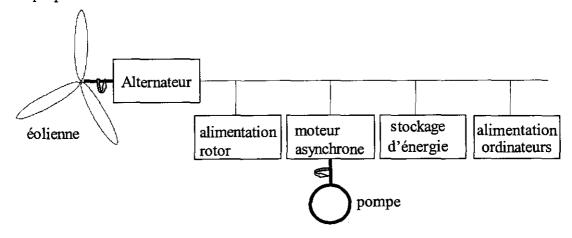
Spécialité : Génie Électrotechnique

Durée de l'épreuve : 4 heures

coefficient: 7

L'emploi de toutes les calculatrices programmables, alphanumériques ou à écran graphique est autorisé à condition que leur fonctionnement soit autonome et qu'il ne soit pas fait usage d'imprimante (circulaire n°99-186 du 16-11-1999).

Vous devez justifier toutes vos réponses même si cela n'est pas précisé à chaque question


Dés que ce sujet vous est remis assurez-vous qu'il est complet.

Ce sujet comporte 8 pages dont les documents-réponses page 7/8 et page 8/8 sont à rendre avec la copie.

Les parties A, B, C et D sont indépendantes.

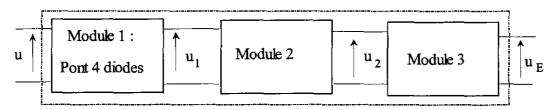
Il est rappelé aux candidats que la qualité de la rédaction, la clarté et la précision des raisonnements, entreront pour une part importante dans l'appréciation des copies.

On se propose d'étudier certains éléments constitutifs d'un réseau éolien autonome.

Les pales de l'éolienne entraînent le rotor d'un alternateur triphasé qui alimente un réseau électrique 400 V sur lequel sont branchés :

- l'alimentation du rotor de l'alternateur ;
- un moteur asynchrone associé à une pompe ;
- une unité de stockage d'énergie ;
- l'alimentation des ordinateurs.

Partie A: Alternateur


- 1. Quelle conversion d'énergie réalise un alternateur ?
- 2. Sur la plaque signalétique de l'alternateur triphasé on peut lire :

8 kVA

230V 400 V

50 Hz

- 2.1. On désire que la tension entre phases de l'alternateur soit de 400 V. Comment couplezvous les enroulements du stator?
- 2.2. Calculer l'intensité efficace nominale du courant de ligne.
- 2.3. La vitesse de rotation du rotor (ou roue polaire) de l'alternateur est de 1000 tr.min⁻¹ (f = 50 Hz). Quel est son nombre de pôles ?
- 3. La tension u_E d'alimentation du rotor (fortement inductif) est une tension de valeur moyenne réglable obtenue à la sortie d'un convertisseur branché entre deux phases de l'alternateur. Ce convertisseur est composé de 3 modules.

- 3.1. Module 1
- 3.1.1. Quelle est la fonction du module 1?
- 3.1.2. L'allure de u étant donnée, représenter en concordance de temps sur le document réponse 1 (page 7/8) l'allure de u_1 (on se place dans le cas d'une conduction ininterrompue et les diodes sont considérées parfaites).

3.2. Module 2

La tension u₂ étant une tension d'amplitude pratiquement constante, quelle est la fonction du module 2?

- 3.3. A partir de la tension u₂, on désire obtenir une tension u_E de valeur moyenne réglable à l'aide du module 3.
- 3.3.1. Quelle est la fonction du module 3?
- 3.3.2. Donner un schéma de principe d'un montage permettant la réalisation de cette fonction.
- 3.3.3. Donner un exemple d'interrupteur électronique commandé pouvant être utilisé dans ce montage.
- 3.3.4. Qu'appelle-t-on rapport cyclique d'un signal créneau ?
- 3.3.5. Représenter u_E si le rapport cyclique est de $\frac{2}{3}$.
- 4. Le courant d'excitation circulant dans les enroulements du rotor (fortement inductif) doit être d'intensité i_E réglable.
- 4.1. Quelle est la nature du courant d'excitation?
- 4.2. Donner un exemple d'ampèremètre permettant de mesurer l'intensité du courant d'excitation.

Partie B: Moteur asynchrone

La plaque signalétique du moteur asynchrone entraînant

la pompe est donnée ci-contre :

cos φ	0,9	V	400	Α	2,6
kW	1,4	$[\mathbf{v}]$	690	Α	1,5
tr/min	1400				
Hz _	50	_ r	oh 3 _		

1. Le réseau électrique auquel est relié ce moteur est

un réseau 400 V. Comment doit-on coupler les enroulements statoriques du moteur ?

- 2. Calculer le nombre de paires de pôles du moteur.
- 3. Calculer le glissement nominal.
- 4. Calculer le rendement du moteur au point de fonctionnement nominal.
- 5. Déterminer le moment Tu_N du couple utile nominal.
- 6. La partie utile de la caractéristique mécanique du moteur Tu(n) est assimilable à une droite. On admettra que la fréquence de rotation à vide est égale à celle de synchronisme. Sur le document réponse (page 7/8), tracer cette partie utile.
- 7. Les résultats d'un essai pour déterminer la caractéristique Tr(n) de la pompe sont donnés dans le tableau ci-dessous :

n(tr.min ⁻¹)	200	550	1000	1200	1350	1500
Tr (N.m)	1	2	4	5	6	7

7.1. Tracer cette caractéristique sur le même système d'axes que celle du moteur.

7.2. En déduire la fréquence de rotation du groupe et le moment du couple moteur.

Partie C : Stockage de l'énergie

Il est nécessaire de stocker de l'énergie dans des batteries d'accumulateurs pour suppléer l'éolienne en cas d'insuffisance de vent.

Les batteries utilisées ont une tension de 48 V. Avant de convertir la tension alternative en une tension continue pour charger les batteries d'accumulateurs, il est donc nécessaire d'utiliser un transformateur abaisseur, le réseau de l'alternateur étant un réseau 400 V.

On utilise le transformateur monophasé suivant branché entre 2 phases du réseau de sortie de l'alternateur :

500 V.A

400V

50 V

50 Hz

Pour étudier ce transformateur on a effectué 3 essais :

• un essai à vide sous tension nominale :

 $U_{20} = 50 \text{ V}$

 $P_{10} = 20 \text{ W}$

On néglige les pertes par effet Joule dans l'essai à vide.

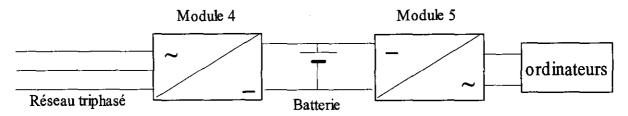
• un essai en court-circuit pour $I_{2CC} = I_{2N} = 10 \text{ A}$:

 $U_{1CC} = 40 \text{ V}$

 $P_{1CC} = 30 \text{ W}.$

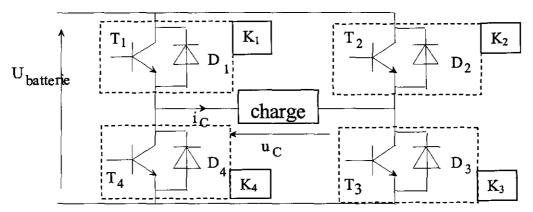
• un essai en charge nominale

 $U_2 = 49 \text{ V}$


 $P_2 = 450 \text{ W}.$

- 1. Calculer le rapport de transformation.
- 2. Avec quel type de voltmètre peut-on mesurer U₂₀ (justifier)?
- 3. Que représente la puissance absorbée à vide P₁₀ ?
- 4. Faire le schéma du montage de l'essai en court-circuit en précisant les conditions expérimentales.
- 5. Les pertes fer sont proportionnelles au carré de la tension d'alimentation. Montrer que l'on peut négliger les pertes fer dans l'essai en court-circuit. Que représente alors la puissance P_{1CC} absorbée lors de cet essai ?
- 6. Représenter le modèle de Thévenin vu du secondaire (secondaire à vide).
- 7. A l'aide de l'essai en court-circuit, déterminer la résistance et la réactance des enroulements ramenées au secondaire.
- 8. Pour le fonctionnement en charge étudié, calculer le rendement du transformateur.

REPERE: 6 PYET ME1/LR1


Partie D: Alimentation des ordinateurs

Pour des raisons de sécurité, l'alimentation des ordinateurs (monophasé 230 V – 50 Hz) ne peut-être interrompue. Ils ne peuvent donc être branchés directement sur le réseau. Les ordinateurs seront reliés au réseau par l'intermédiaire d'une batterie d'accumulateurs.

En cas d'incident technique ou de panne de vent, la batterie assure l'alimentation pendant la durée nécessaire.

- 1. Quel est le nom du module 5?
- 2. Pour obtenir une tension la plus proche d'une sinusoïde, ce module est souvent très sophistiqué, nous allons donc étudier le modèle simplifié ci-contre :

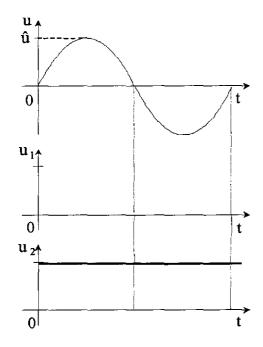
 $U_{\text{batterie}} = 200V.$

Aucune connaissance sur l'onduleur à quatre interrupteurs n'est nécessaire pour traiter ce qui suit.

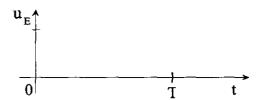
Les blocs K₁, K₂, K₃ et K₄ (voir schéma précédent) sont des interrupteurs électroniques ; ils doivent permettre le passage du courant dans les deux sens.

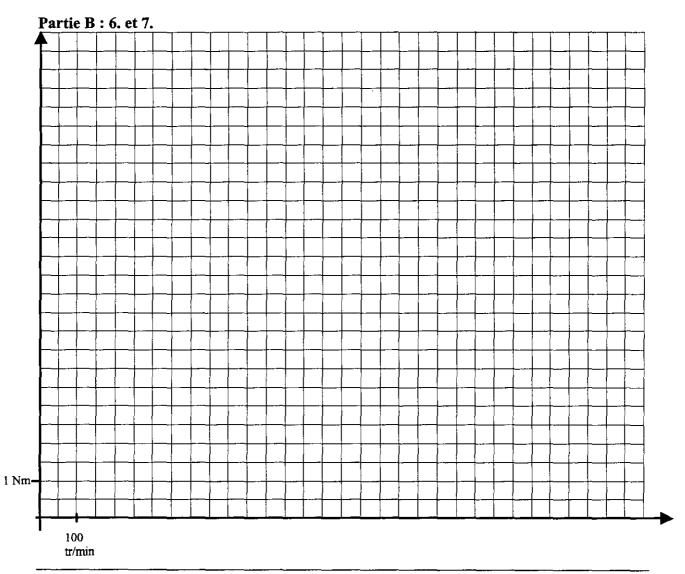
Chaque interrupteur est constitué d'un transistor et d'une diode montée en anti-parallèle.

Ils sont commandés périodiquement (période T = 20 ms) de sorte que :


Sur l'intervalle [0 ; $\frac{T}{2}$], K_1 et K_3 sont fermés et K_2 et K_4 ouverts.

Sur l'intervalle $[\frac{T}{2}; T]$, K_2 et K_4 sont fermés et K_1 et K_3 sont ouverts.


- 2.1. Les interrupteurs sont considérés comme parfaits. Qu'est-ce que cela signifie ?
- 2.2. Pourquoi met-on des diodes en anti-parallèle sur les transistors de chacun des interrupteurs ?


- 3. Etude de u_C
- 3.1. Sur $[0; \frac{T}{2}]$, quelle est la relation entre u_C et $U_{batterie}$? même question sur $[\frac{T}{2}; T]$.
- 3.2. Représenter, sur la copie, l'allure de la tension u_C. Avec quel type de voltmètre peut-on mesurer sa valeur efficace ?
- 4. Pour relever à l'oscilloscope la tension u_C sur la voie A, on dispose d'une sonde différentielle de tension de rapport 1/10. Pour relever l'image du courant i_C sur la voie B, on dispose d'une sonde de courant de sensibilité 50 mV/A.
- 4.1. Faire le schéma de branchement de l'oscilloscope permettant de visualiser simultanément u_C et i_C.
- 4.2. On représente une période du signal sur toute la largeur de l'écran. Quelle est la base de temps utilisée ?
- 4.3. Sachant que vous disposez des calibres 2 V/Div, 5 V/Div, 10 V/Div et 50 V/Div, représenter la courbe u_C obtenue sur l'oscilloscope sur la fig.1 du document réponse 2 (page 8/8) en concordance de temps avec la figure 2.
- 4.4. Sur la fig.2 (page 8/8) vous avez l'écran d'oscilloscope représentant l'image de i_C. Quelle est la valeur maximale de ce courant ?
- 5. Quelle est l'expression de la puissance instantanée reçue par la charge ? En déduire le signe sur les différents intervalles de temps et le comportement de la charge (générateur ou récepteur). Compléter le tableau page 8/8.

Document réponse 1 à rendre avec la copie

Partie A: 3.

STI Génie Electrotechnique – Sciences physiques et Physique Appliquée

REPERE: 6 PYET ME1/LR1

Document réponse 2 à rendre avec la copie

			Partie D : 4 et 5
			 Fig.1.
			Base de temps :
			 Calibre voie A de l'oscilloscope :
			 Fig.2.
0 V			Base de temps :
			Calibre voie B: 100 mV/Div
			[
			Signe de la puissance reçue par la charge
			Comportement de la charge