BREVET DE TECHNICIEN SUPÉRIEUR INDUSTRIES PAPETIÈRES

Session 2012

Options :
Production des pâtes, papiers et cartons
Transformation

ANALYSE FONCTIONNELLE ET STRUCTURELLE DES SYSTÈMES

Sous épreuve U42 : Étude de dispositions constructives

Le texte de l'épreuve est constitué de trois dossiers

Le dossier technique : pages 2 à 17 Le dossier sujet : pages 18 à 22 Le dossier réponse : pages 23 à 27

Durée de l'épreuve : 5h Coefficient : 3.5

Aucun document autorisé.

La calculatrice de poche à fonctionnement autonome, non imprimante, est autorisée conformément à la circulaire n°99-186 du 16 novembre 1999.

BTS INDUSTRIES PAPETIÈRES	SUJET	Session 2012
Épreuve U42 – Étude de dispositions constructives	CCDE: 12ITEDI1	Page 1/27

BREVET DE TECHNICIEN SUPÉRIEUR INDUSTRIES PAPETIÈRES

Session 2012

Analyse fonctionnelle et structurelle des systèmes

Sous épreuve U42 : Etude des solutions constructives

DOSSIER TECHNIQUE

• Page 3/27 : support de l'épreuve.

• Page 4/27 : dessin d'ensemble du raffineur conique.

Page 5/27 : dessin d'ensemble de l'arbre de réglage de l'entrefer.
Page 6/27 : nomenclature partielle de l'arbre de réglage de l'entrefer.

• Page 7/27 : dessin d'ensemble de l'arbre rotor du raffineur.

Page 8/27 : nomenclature de l'arbre rotor.

Page 9/27 : descriptif général de l'appareil.

• Page 10/27 : réducteur de l'arbre rotor.

• Page 11/27 : nomenclature partielle du réducteur de l'arbre rotor.

Page 12/27 : tableau de tolérancement des alésages.
Page 13/27 : tableau de tolérancement des alésages.

Page 13/27 : tableau de tolérancement des alésages.
Page 14/27 : document technique roulement à rouleaux coniques.

• Page 15/27 : tableau de détermination des coefficients axiaux et radiaux.

Page 16/27 : documentation technique sur les clavettes.

Page 17/27 : documentation technique sur les vis.

BTS INDUSTRIES PAPETIÈRES	SUJET	Session 2012
Épreuve U42 – Étude de dispositions constructives	CODE: 12ITEDI1	Page 2/27

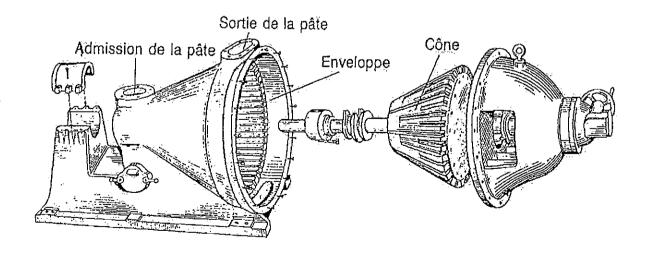
Support de l'épreuve

Le support de l'épreuve est constitué par un raffineur conique intégré dans un site de fabrication de papiers spéciaux.

La vue extérieure du raffineur est donnée sur le document page 3/27.

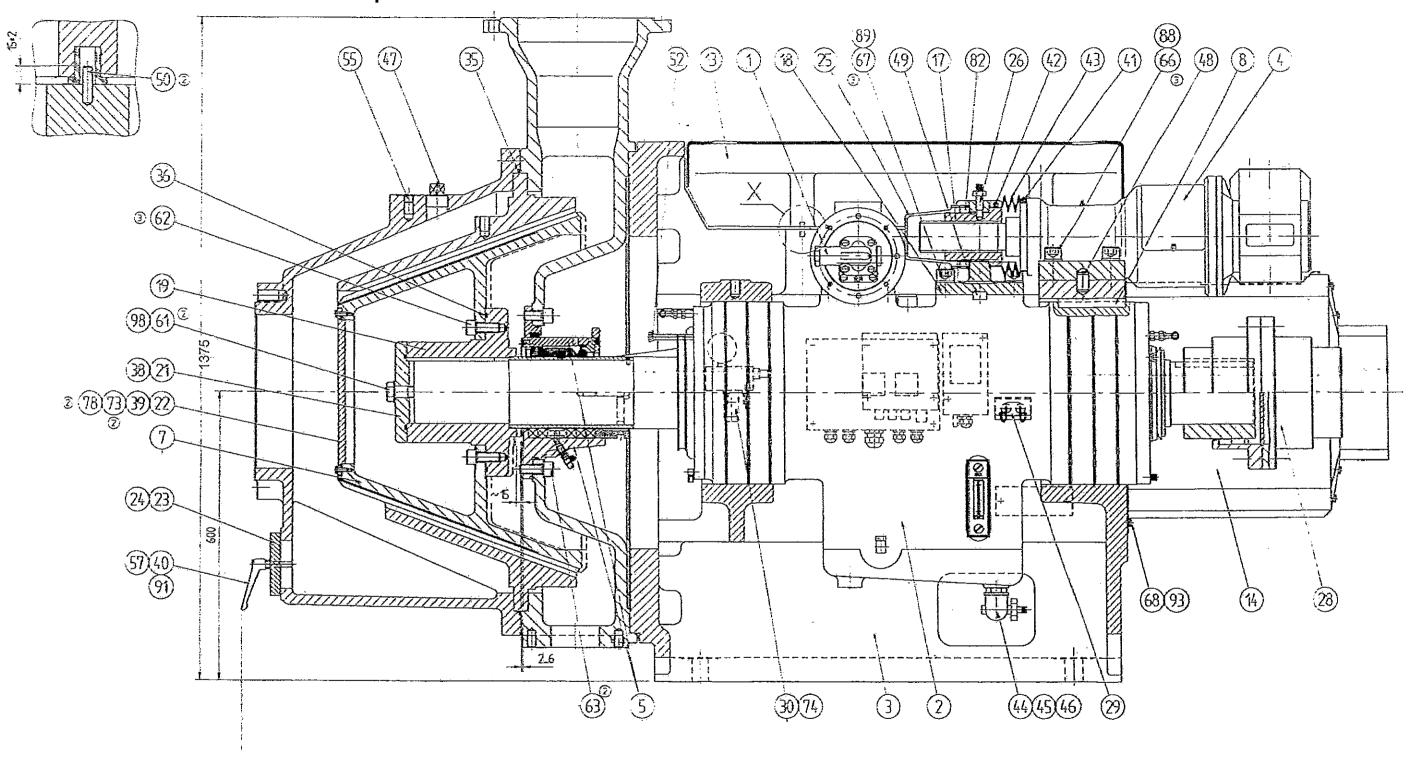
Le dessin d'ensemble du raffineur est donné sur les documents pages 4/27, 5/27 et 7/27.

But du raffinage

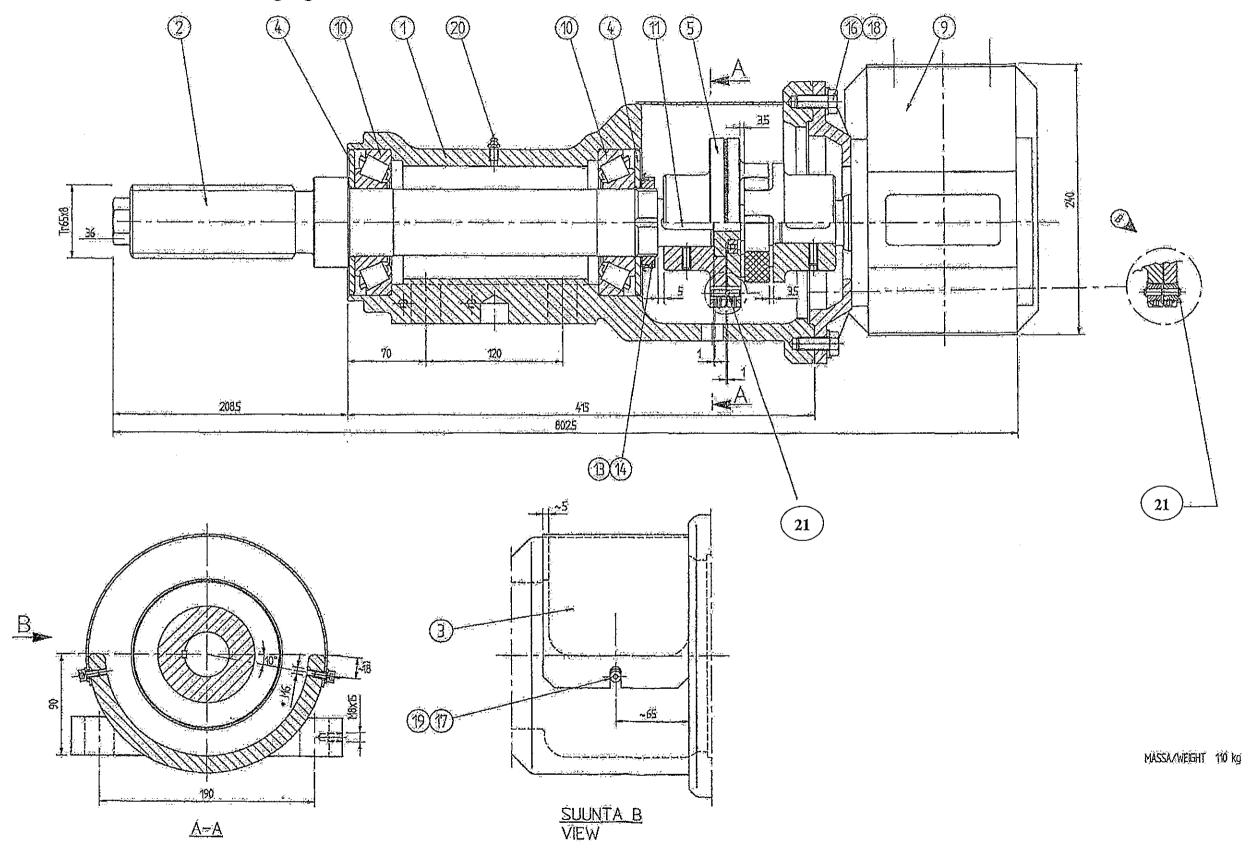

Le raffinage est une opération extrêmement importante dans la fabrication du papier pour trois raisons essentielles :

- pratiquement toutes les propriétés finales de la feuille sont influencées par le raffinage,
- la conduite de la machine proprement dite est fortement influencée par le raffinage,
- le raffinage est une opération coûteuse car elle consomme beaucoup d'énergie.

Le raffinage de la pâte à papier a pour but d'améliorer les propriétés de résistance physique et de qualité du papier en modifiant les caractéristiques morphologiques des fibres afin d'augmenter leur faculté à créer des liaisons inter-fibres.


L'opération de raffinage a donc un but purement qualitatif : les propriétés finales de la feuille ne sont pas exclusivement mais en grande partie conditionnées par le raffinage qui ne doit donc être ni insuffisant, ni excessif.

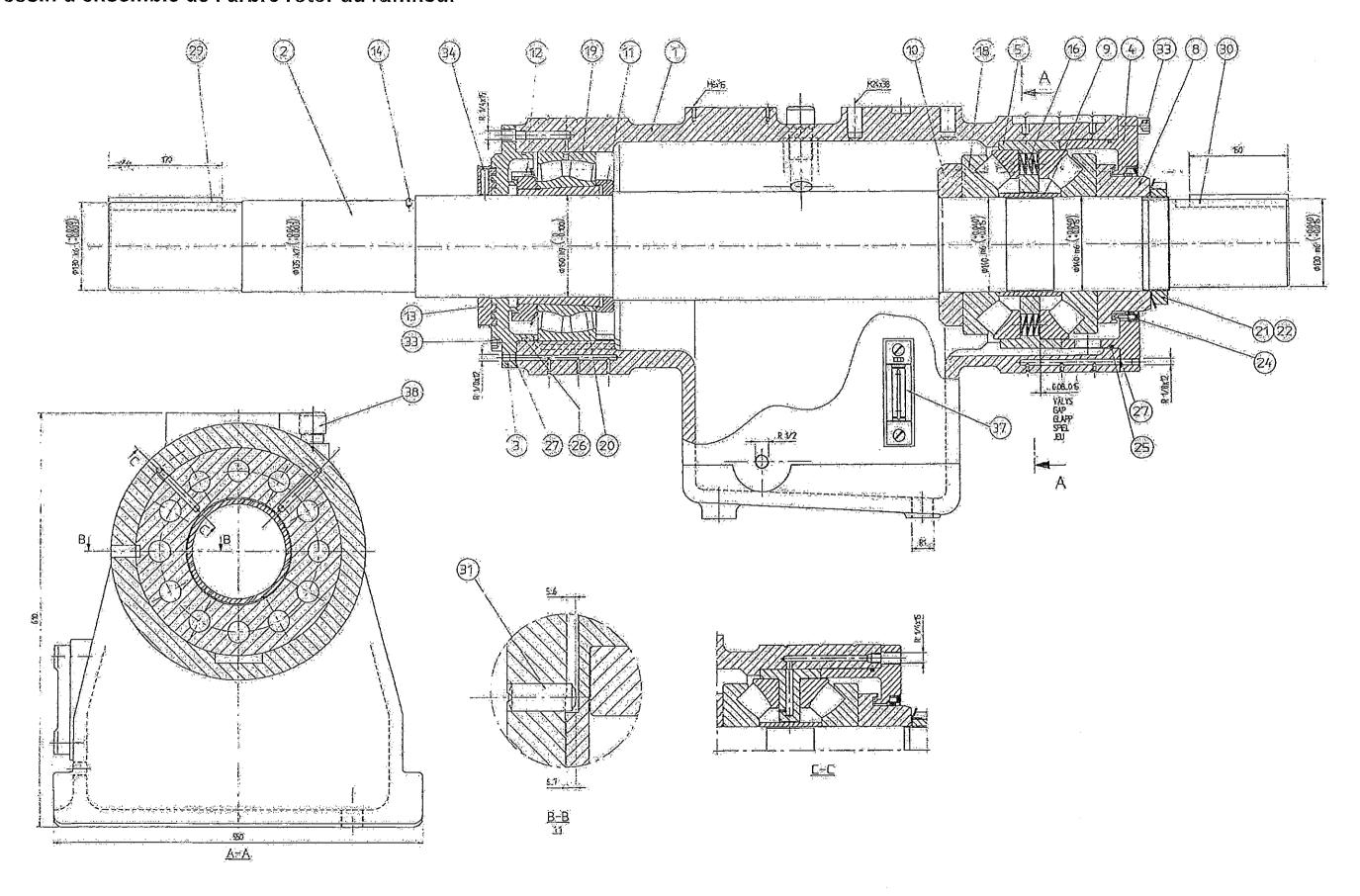
Le raffinage est effectué par passage forcé de la suspension fibreuse entre deux disques garnis de lames. Il s'agit essentiellement d'une action mécanique sur les fibres en milieu aqueux.


BTS INDUSTRIES PAPETIÈRES	SUJET	Session 2012
Epreuve U42 – Étude de dispositions constructives	CODE: 12ITEDI1	Page 3/27

Dessin d'ensemble du raffineur conique

BTS INDUSTRIES PAPETIÈRES	SUJET	Session 2012
Épreuve U42 – Étude de dispositions constructives	CODE: 12ITEDI1	Page 4/27

Dessin d'ensemble de l'arbre de réglage de l'entrefer


BTS INDUSTRIES PAPETIÈRES	SUJET	Session 2012
Épreuve U42 – Étude de dispositions constructives	CODE: 12ITEDI1	Page 5/27

Nomenclature partielle de l'arbre de réglage de l'entrefer

21	Goupille de sécurité	1
20	Graisseur	1
19	Rondelle	2
18	Rondelle	8
17	Vis CHC M6	2
16	Vis H M12	8
14	Rondelle frein	1
13	Ecrou à encoches	
11	Clavette	1
10	Roulement à rouleaux coniques	2
5	accouplement	1
3	Carter	1
2	Arbre fileté	1
1	Corps	11
REPERE	désignation	Nombre

BTS INDUSTRIES PAPETIÈRES	SUJET	Session 2012
Épreuve U42 – Étude de dispositions constructives	CODE: 12ITEDI1	Page 6/27

Dessin d'ensemble de l'arbre rotor du raffineur

BTS INDUSTRIES PAPETIÈRES	SUJET	Session 2012
Épreuve U42 – Étude de dispositions constructives	CODE: 12ITEDI1	Page 7/27

Nomenclature partielle de l'arbre rotor

29	Clavette	1
21	Ecrou à encoches	1
20	Bague conique	1
19	Roulement à rotule	1
18	Roulement à rouleaux coniques	2
16	Ressorts	12
13	Chicane	1
12	Ecrou à encoches	1
11	Bague	1
9	Entretoise	1
8	Bague	1
5	Entretoise	1
4	Flasque de droite	1
3	Flasque de gauche	1
2	Arbre rotor	1
1	Corps	1
REPERE	désignation	Nombre

BTS INDUSTRIES PAPETIÈRES	SUJET	Session 2012
Épreuve U42 – Étude de dispositions constructives	CODE: 12ITEDI1	Page 8/27

Description générale de l'appareil

Le raffineur est un appareil comportant un rotor tournant dans un stator fixe. Ces raffineurs permettent un travail efficace avec une bonne précision. Ils sont équipés d'un rotor et d'un stator coniques de lamages aux caractéristiques précises.

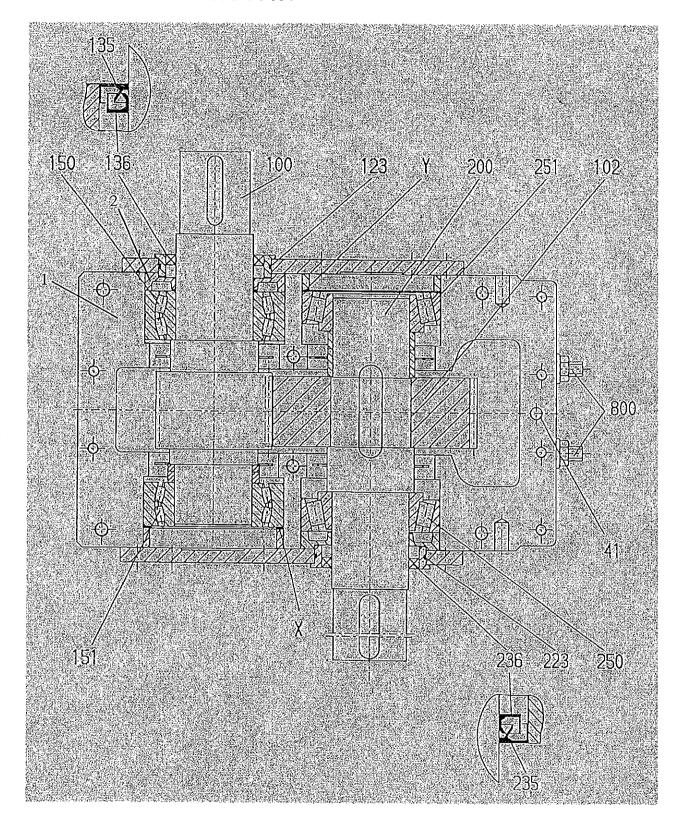
La construction est relativement compacte. En effet, tous les éléments mécaniques sont logés dans un seul bâti en fonte. Les organes de raffinages sont montés à une extrémité pour permettre un accès aisé.

Le raffineur conique dispose d'un rotor en rotation coulissant et d'un stator bloqués en rotation et en translation.

Caractéristiques générales du raffineur

Masse:

raffineur complet : 3700 kg


Moteur rotor:

- puissance: 500 kW

- fréquence de rotation : 1500 tr/min

BTS INDUSTRIES PAPETIÈRES	SUJET	Session 2012
Épreuve U42 – Étude de dispositions constructives	CODE: 12ITEDI1	Page 9/27

Réducteur de l'arbre rotor

BTS INDUSTRIES PAPETIÈRES	SUJET	Session 2012
Épreuve U42 – Étude de dispositions constructives	CODE: 12ITEDI1	Page 10/27

Nomenclature partielle du réducteur de l'arbre rotor

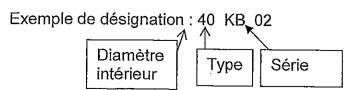
251	Roulement à rouleaux coniques	1
250	Roulement à rouleaux coniques	1
200	Arbre de sortie	1
151	Roulement à rouleaux sphériques	1
150	Roulement à rouleaux sphériques	1
136	Joint	1
102	Roue dentée	1
100	Arbre d'entrée	1
2	Bague axiale	1
1	Bâti	1
REPERE	désignation	Nombre

BTS INDUSTRIES PAPETIÈRES	SUJET	Session 2012
Épreuve U42 – Étude de dispositions constructives	CODE: 12ITEDI1	Page 11/27

Tableau de tolérancement des alésages

Alacana	Jusqu'a	//3/a.6	6.510	10 a 18	10 20	-30 a150.	60.00	280 à 5	-120 a s	%180 a.c	250 a=	.316 a	400 a
Alesage	3 inclus	sinclus			=rora;5U	50 d 00.	SU a ou	\$120	180	250	315	400	500
D 10	+60	+78	+98	+120	+149	+180	+220	+260	+305	+355	+400	+440	+480
	+20	+30	+40	+50	+65	+80	+100	+120	+145	+170	+190	+210	+230
F.7	+16	+22	+28	+34	+41	+50	+60	+71	+82	+96	+108	+119	+131
	+6	+10	+13	+16	+20	+25	+30	+36	+43	+50	+56	+62	+68
G 6	+8	+12	+14	+17	+20	+25	+29	+34	+39	+44	+49	+54	÷60
	+2	+4	+4	+6	+7	+9	+10	+12	+14	+15	+17	+18	+20
H 6	+6	+8	+9	+11	+13	+16	+19	+22	+25	+29	+32	+36	+40
	0	0	0	0	0	0	0	0	0	0	0	0	0
H7	+10	+12	+15	+18	+21	+25	+30	+35	+40	+46	+52	+57	+63
	0	0	0	0	0	0	0	0	0	0	0	0	0
H8.	+14	+18	+22	+27	+33	+39	+46	+54	+63	+72	+81	+89	+97
1700	0	0	0	0	0	0	0	0	0	0	0	0	0
H.9	+25	+30	+36	+43	+52	+62	+74	+87	+100	+115	+130	+140	+155
	0	0	0	0	0	0	0	0	0	0	0	0	0
H 10	+40	+48	+58	+70	+84	+100	+120	+140	+160	+185	+210	+230	+250
2067	0	0	0	0	0	0	0	0	0	0	0	0	0
H111	*	+75	+90	+110	+130	+160	+190	+210	+250	+290	+320	+360	+400
	0	0	0	0	0	0	0	0	0	0	0	0	0
H-12	+100	+120	+150	+180	+210	+250	+300	+350	+400	+460	+520	+570	+630
	0	0	0	0	0	0	0	0	0	0	0	0	0
H 13	+140	+180	+220	+270	+330	+390	+460	+540	+630	+720	+810	+890	+970
	0	0	0	0	0	0	0	0	0	0	0	0	0
U.7.	+4	+6	+8	+10	+12	+14	+18	+22	+26	+30	+36	+39	+43
	-6	-6	-7	-8	-9	-11	-12	-13	-14	-16	-16	-18	-20
K6	0	+2	+2	+2	+2	+3	+4	+4	+4	+5	+5	+7	+8
	-6	-6	-7	-9	-11	-13	-15	-18	-21	-24	-27	-29	-32
K 7	0	+3	+5	+6	+6	+7	+9	+10	+12	+13	+16	+17	+18
	-10	-9	-10	-12	-15	-18	-21	-25	-28	-33	-36	-40	-45
M 7	-2	0	0	0	0	0	0	0	0	0	0	0	0
	-12	-12	-15	-18	-21	-25	-30	-35	-40	-46	-52	-57	-63
N7	-4	-4	-4	-5	-7	-8	-9	-10	-12	-14	-14	-16	-17
	-14	-16	-19	-23	-28	-33	-39	-45	-52	-60	-66	-73	-80
N 9.		0	0	0	0	0	0	0	0	0	0	0	0
	-29	-30	-36	-43	-52	-62	-74	-87	-100	-115	-130	-140	-155
P.6		-9	-12	-15	-18	-21	-26	-30	-36	-41	-47	-51	-55
	-12	-17	-21	-26	-31	-37	-45	-52	-61	-70	-79	-87	-95
P.7	-6	-8	-9	-11	-14	-17	-21	-24	-28	-33	-36	-41	-45
	-16	-20	-24	-29	-35	-42	-51	-59	-68	-79	-88	-98	-108
P'9-	-	-12	-15	-18	-22	-26	-32	-37	-43	-50	-56	-62	-68
	-21	-42	-51	-61	-74	-88	-106	-124	-143	-165	-186	-202	-223

BTS INDUSTRIES PAPETIÈRES	SUJET	Session 2012
Épreuve U42 – Étude de dispositions constructives	CODE: 12ITEDI1	Page 12/27


Tableau de tolérancement des arbres

Arbres	ขนรถนี้ a-3	3 at6 =	6;a:10	10.a 18	18 a 3	130 a 150 c	50 a 80 g	80la 120	120 à 1	180 a 250	250 a	315 a. 400	400 a 500
	inclus				发现				61 12 2				
d.9.	-20	-30	-40	-50	-65	-80	-100	-120	-145	-170	-190	-210	-230
d.10	-45 . -20	-60 -30	-75 -40	-93 -80	-117	-142	-174	-207	-245	-285	-320	-350	-385
10.10	-60	-30 -78	- 4 0 -98	-120	-65 -149	-80 -180	-100 -220	-120 -250	-145 -305	-170	-190	-210	-230
d11	-20	-30	-40	-50	-65	-80	-100	-120	-145	-355 -170	-400 -190	-440 -210	-480 -230
	-80	-105	-130	-160	-195	-240	-290	-340	-395	-460	-510	-570	-630
e 7	-14	-20	-25	-32	-40	-50	-60	-72	-85	-100	-110	-125	-135
-4500	-24	-32	-40	-50	-61	<u>-75</u>	-90	-107	-125	-146	-162	-182	-198
.e.8	-14	-20	-25	-32	-40	-50	-60	-72	-85	-100	-110	-125	-135
200	-28	-38	-47	-59	-73	-89	-106	-126	-148	-172	-191	-214	-232
ë9;; v	-14 -39	-20 -50	-25 -61	-32 -75	-40 -92	-50 -112	-60 -134	-72 -159	-85 405	-100	-110	-125	-135
f 6	-6	-10	-13	-16	-20	-25	-30	-36	-185 -43	-215 -50	-240 -56	-265 -62	-290 -68
	-12	-18	-22	-27	-33	-41	-49	-58	- 6 8	-30 -79	-88	-02 -98	-108
1774	-6	-10	-13	-16	-20	-25	-30	-36	-43	-50	-56	-62	-68
	-16	-22	-28	-34	-41	-50	-60	-71	-83	-96	-106	-119	-131
f-819	-6	-10	-13	-16	-20	-25	-30	-36	-43	-50	-56	-62	-68
programme.	-20	-28	-35	-43	-53	-64	-76	-90	-106	-122	-137	-151	-165
g5	-2 -6	-4 -9	-5 -11	-6 -14	-7 -16	-9 -20	-10 -23	-12 -27	-14 -32	-15	-17	-18	-20
g 6	-2	-4	-5	-6	-7	-9	-10	-12	-32 -14	-35 -15	-40 -17	-43 -18	-47 -20
	-8	-12	-14	-17	-20	-25	-29	-34	-39	-44	-49	-54	-20 -60
h 5	0	0	0	0	0	0	0	0	0	0	0	0	0
	-4	-5	-6	-8	-9	-11	-13	-15	-18	-20	-23	-25	-27
ih 6	0	0	0	0	0	0	0	0	0	0	0	0	0
h 7450	-6 0	-8 0	-9 0	-11	-13	<u>-16</u>	-19	-22	-25	-29	-32	-36	-40
TIII (-10	-12	-15	0 -18	0 -21	0 -25	0 -30	0 -35	0	0	0	0	0
h8	0	0	0	0	0	0	0	0	-40 0	-46 0	-52 0	-57 0	-63 0
	-14	-18	-22	-27	-33	-39	-46	-54	-63	-72	-81	-89	-97
h95.	0	0	0	0	0	0	0	0	0	0	0	0	0
Direction.	-25	-30	-36	-43	-52	-62	-74	-87	-100	-115	-130	-140	-155
hx10.	0	0	0	0	0	0	0	0	0	0	0	0	0
hm	-40 0	-48 0	-58 0	-70 0	-84 0	-100	-120	-140	-160	-185	-210	-230	-250
	-60	-75	-90	-110	-130	0 -160	0 -190	0 -220	0 -250	0 -290	0	0	0
H 13	0	0	0	0	0	0	0*	0	0	0	-320 0	-360 0	-400 0
	-140	-180	-220	-270	-330	-390	-460	-540	-630	-720	-810	-890	-970
16	+4	+6	+7	+8	+9	+11	+12	+13	+14	+16	+16	+18	+20
	-2	-2	-2	-4	-4	-5	-7	-9	-11	-13	-16	-18	-20
js 9:	+12	+15	+18	+21	+26	+31	+37	+43	+50	+57	+65	+70	+77
is 11	-12 +30	-15 +37	-18 +45	-21 +55	-26 +65	-31 +80	-37	-43	-50	-57	-65	-70	-77
12	-30	-37	-45	-55	-65	-80	+95 -95	+110 -110	+125 -125	+145 -145	+160 -160	+180 -180	+200
K-5	+4	+6	+7	+9	+11	+13	+15	+18	+21	+24	+27	+29	-200 +32
	0	+1	+1	+1	+2	+2	+2	+3	+3	+4	+4	+4	+5
k6	+6	+9	+10	+12	+15	+18	+21	+25	+28	+33	+36	+40	+45
m 6	0	+1	+1	+1	+2	+2	+2	+3	+3	+4	+4	+4	+5
m 5	+6	+9	+12	+15	+17	+20	+24	+28	+33	+37	+43	+46	+50
m6	+2 +8		+6 +15	+7 +18	+8 +21	+9	+11	+13	+15	+17	+20	+21	+23
III O	+2		+6	+7	+8	+25 +9	+30 +11	+35 +13	+40 +15	+46 +17	+52 +20	+57 +21	+63 +23
n.6	+10		+19	+23	+28	+33	+39	+45	+52	+60	+66	+73	+23
	+4	+8	+10	+12	+15	+17	+20	+23	+27	+31	+34	+37	+40
p.6	+12		+24	+29	+35	+42	+51	+59	+68	+79	+88	+98	+108
	+6	+12	+15	+18	+22	+26	+32	+37	+43	+50	+56	+62	+68
									-				

BTS INDUSTRIES PAPETIÈRES	SUJET	Session 2012
Épreuve U42 – Étude de dispositions constructives	CODE: 12ITEDI1	Page 13/27

Documentation technique roulement à rouleaux coniques

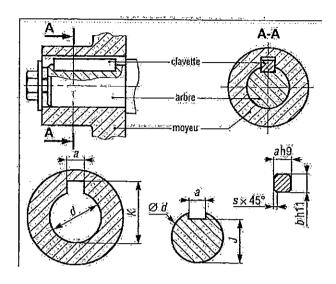
So	mensions 23 c C	9					n max	* Tr/min.		7. 8	10 000	8000	7.000	6300	5.300	7,000	\$3 \$3	4000	3,000	3,400	3200	3000	2800	2600	2400	2400	2200	2200	98	1800		100 m
en micromètres	Series do dim 11 03 ef 23	₹ 250	85	D05 ₹		ensions 23	1,10	Nep-	Service Control	3300	4130	5610	7210	/8970	11000	13 200	901.9	18,700	21,600	24600	27.500	31,900	35800	38000	42.900	45,000	53900	56100	66'000	74800		
. Valeurs e	sions -					Serie de dime	30	TI CONT				3300	5 200	0220	8.300	10 200	12 700	15000	17300	20000	22,800	26,000	30,000	32,000	36.000	40000	45500	48000	57,000	65.500	1447	S. Carterior
	de dimen 02 el 22	±250	= 250	÷ 200	±750	Seile						-	Ŷ	2	~	2	2,3	25	3	က		3:	ŀ	÷	4	÷÷	-	Ŧ		, ,		
A COTES	les de	41	10	4)	H	数是		100			4	25,25	28,75	32,75	35,25	38,25	42.25	45,50 2,5	48,50	2.	访	58	05:19	83,50	05,50	200 71,50	82	93 26	94,50	96,50	蔥	1000
3	is is						当		E CONTRACTOR	S. F.	25	23	. 72	æ	a	300	ĵ.	120	130 48,50 3	140	150	760	170	190	190	200	215" 77,50	225	240	280		chartely a
NON		S					T BENT						8500	7000	6300	0009	2600	5000	4.500	4000		3,600	3.400	3200	3000	2800	2600	2600	2400	2200	2000	
	lesage nomin d'en nom	de 10 à 50 inclus	50 à 80	80 à 120	120 8 140	ons-22	300						4730	6,560	7040	7480	7650	9900	11300	14200	14700	15:100	17,600	30 100	23 800	25 400	29.700	34 100	37.400	44 000	52 300	
	Alles	9			- T	Serie de dimensions 22	28.3						3350	4300	2000	5500	5.700	2500	9.150	11200		12000	13,700	16300	19300	22,000	52000	29 000	32.500	39,000	47.500	-
			ليند		 	erie d								S.	<u>.</u>	<u>۲</u>	, <u></u>	~	evi .						5.5	·	62	3		۲٦.	-	1
S. C.	l					8	海域						71.25	24,25	24,75 1,5			26.75	29,75	32,75	33,25 2	33,25 2	35,25 2,5	38,50, 2,5	92,50	45,50		53	95	61,50	57,75	
en en	ī	-	*	(I	-		Q						925	72	2			ē	윤		52	줦			æ	170	160		200	215	230	1
	NP C			+			in max	13 000	12.000	11 000	0000	Dance .	nac y	e i	000	230	4800	4300	4000	3600	8	7		2800	2600	2,600	2,400	2200	2200	2000	1800	
*	1	<u>L</u>				sis 03 🛠		2120	2600	1	::	2002	2070	0.000	050 0	f	***	13 400	16100	18300	20900	22500	25500	28.500	30800	34,100	38 000	40,200	44800	52800	29400	
ਹ? 	11* \	بىسىم	ά	eler e	-	erle de dimensions 03		1270	1600	2000	2,640	976	2 2	nno +	nno c				-			- 1		siri .			***		34500	41500	47500	
						er de		÷.	ÿ.	4	ii S	¥		4 .	v s									*			•	. 	Ý.	**	2	f
						S	11	14.25	15.25	35.35		30.75	2 2		47.05		S S				***		45,50	44,50	9					59,50	63,75	
•					7 12844			42	4	52	1	100	-		-	-					- 1			. 1241						260	290	
		76-100-01-170							13,000	11 000	10000	8.500	J.W.	8300	9000	200	2000	mne.		1000 r	000	2000	3400	3200	2005	2800	2800	2600	2400	2200	2000	4000
	9				100	zn silo	Napas		1790	2600	2920	3800	5	5 830	6.070	a de	040	07.0	2 000	14.000	13,000	2000	19 000	ancor	10200	20,500	. 43300	25.500	28600	31900	34700	00500
COMOUES	TYPE KB	Angle de contact o comoris en			Section of the sectio	Similar of	Vest 2017 Color		1100 1780	1680	1930	2550	3250	000	4.400	900	ş .	בי מוני		000		S 1 44		20 15 s						····· / "		35 503
10 M		o de	1 1		200							*-	1.5	2		· · · · ·	-1 -			١,		- 35				<u> </u>	33 E		-	::: 3		
4		Ang		15. 12.					40 13,25 1	47 15,25 1	52 16,25	17,25	18.25	80 19.75 1.5	95 20.75 1.5	7.75	2 2	27.75	1 2	2,4%	27.05	28.25 9.5	30 50 3 5	a G Unica	24 50 2	<u> </u>	2 5	2	=	43,00	<u></u>	45.75 4
•									40		52	- 62	72 18.25	æ	88	8	Ē	110 23.75	120 24 75	3	130 27.05	Ę	Ē	180		700	10		007	é(z	230 43,75	250
9 (2.11)						4		108	20	208	22.	300	300	1	45	320	22				756		1 26		, jo		3 6		3 2			

BTS INDUSTRIES PAPETIÈRES	SUJET	Session 2012
Épreuve U42 – Étude de dispositions constructives	CODE: 12ITEDI1	Page 14/27

Détermination des coefficients axiaux et radiaux pour les roulements à rouleaux coniques

$$P = X.F_r + Y.F_q$$

	:	$\frac{F_a}{F_r}$	≤ <i>e</i>	$\frac{F_a}{F_r}$	> e	
Série de dimension	Alésage d	Х	Υ	Х	Υ	е
:	17 à 20				1.75	0.34
02	25 à 40	1	0	0.4	1.60	0.37
	45 à 110		····		1.45	0.41
22	30 à 40	1	0	0.4	1.60	0.37
	45 à 110	'		0.4	1.45	0.41
	15 à 17			,	2.10	0.28
03	20 à 35	1	0	0.4	1.95	0.31
	40 à 120				1.75	0.34

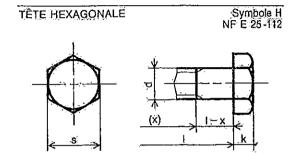

Calcul de durée de vie : $L_{10} = \left(\frac{C}{P}\right)^k$ avec -k=3 pour des roulements à billes

 $-k = \frac{10}{3}$ pour des roulements à rouleaux

BTS INDUSTRIES PAPETIÈRES	SUJET	Session 2012
Épreuve U42 – Étude de dispositions constructives	CODE: 12ITEDI1	Page 15/27

Documentation technique sur les clavettes

Choix d'une clavette :



	,	ļ		série no	ormale			série m	ince	cas d'une fixation par vis						
d	а	b	s	J	K	L	b*	J.	K*	vis	t	<u>z</u>	g	ř		
6à 8 inclus 8à 10	2	2	0,08	d-1,2	# €9	6 à 20 6 à 36								-		
8 å 10 0 à 12	3	3.4.5.6	à	d - 1.8	d + 1,4	6à 36			1							
0 a 12	4	4	0,16	d - 2.5	d + 1.8	8 à 45										
2 ă 17	5	5	0,16	d-3	d + 2,3	10 à 56	3.	d-18	d+1,4							
7 a 22	6,		à,	d-35 d-4	d + 2,8	14 à 70	4	d-2,5	d+1.8	M2,5-6	5	2,9 3,4 4,5	3	2,5		
2 a 30	8:	7	0,25		d + 3.3	18 á 90	5	d-3	d+2,3	M3-8	6,5 8 10	3,4	3,5 4,5 5,5	3		
0a 38	10	8	0,25	d-5	d + 3.3	22 à 110	6	d - 3.5	d+28	M4-10	8	4,5	4.5	4		
8 å 44 4 å 50	12	8		d-5	d + 3.3	28 à 140	6.6	d = 3.5	d+2,8	M5-10	10	5,5	5,5,	4 5 6		
8 å 44 4 å 50	14	9	∙à	d - 5.5	d + 3.5	36 à 160		d-3,5	d+2.8	M6-10	12	6,6	6,5			
0 à 58	14 16 18	10 11		d-6	d + 4.3	45 à 180	7	d-4	0 + 3,3	M6-10	12	6,6	6,5 8,5 8,5	5		
8 ä 65	18	11	0,4 0,4	<i>d</i> ∺7	0 + 4.4	50 à 200	7	∂ – 4	d+3,3	M8-12 M8-12	16 16 20	9	8,5	8		
5 à 75	.20	12	0,4	a-7,5	d + A,9	56 à 220	8	<i>d−</i> ,5	d + 3,3	M8-12	16	Ş.	8,5	8		
5à 85	22	14	à.	d-9	0 + 5.4	63 à 250	9	d → 5,5	0+3,8	M10-12		Ĩį	10,5 10,5	10		
5 a 95	25	14	0,6	d-9	a + 5,4	70 a 280	9 10	a-5.5	d + 3,8	M10-12	20	11	10,5	10 10		
95 à 110	28	16	,	ä 10	a + 6.4	80 à 320	10	a-6	d+4.5	M10-16	20	11	10,5	10		

BTS INDUSTRIES PAPETIÈRES	SUJET	Session 2012
Épreuve U42 – Étude de dispositions constructives	CODE: 12ITEDI1	Page 16/27

Documentation technique sur les vis hexagonale

Choix d'une vis à tête hexagonale.

<u>.</u>	Pas :	****	k -	d	Pas	â	k .,	ď	Pas	3	. X
М3	0,5	5,5	2	Mio	1,50	16	6,4	M24	3	35	15
24	0,7	7	2,8	M12.	1,75	18	7,5	M30	3,5	46	18,7
M5	0,8	8	3,5	(M14)	2	21	8,8	M36	4	55	22,5
M6 :	1	10	4	M16	2	24	10	M42	4,5	65	26
M8 :	1.25	13	5,3	M20	2,5	30	12,5	M48	5	75	30

		*		****			andrews .		5 Mb				Lor	gueu	rsi l					geor.			• <u>- حربين در</u>		۳.		
d	2,5	3	Ä	5	6	8	10	12	16	20	25	30	35	40	45	50	55	60	65	70	80	90	100	110	120	130	140
1,6							7		.																		3
2			2						() -	18																	
2.5					-:						17																
3					*					teache and a	18	18															
4				96						A		20	20	20													
5									Zo	nΔ	Λ	22	22	22	:22	22							i i			Ď.	
8							,,,,,,,		۷.	uc.			25	24	24	24	24	24									
8							1988		;	.``	i tin			24	28	25	28	28	28	28	28						
ĺ0									55.5	7	í				32	32	32	32	32	32	32	32	32				
12										_						35	36	36	36	36.	36	36	38	36	36		
14)																11.45	*****	40	40	40	40	40	40	40	40	40	40
16													1	2				44	44	44	44	44	44	Ų	44.	.44	.44
20				18/8				8								2.				52	52	52	52	52	52	52	52

- * : toutes les valeurs de l à l'intérieur de la Zone A correspondent à des vis à tige entièrement filetée, x=1
- ** : les valeurs numériques indiquent les longueurs filetées des vis à tige partiellement filetée.

BTS INDUSTRIES PAPETIÈRES	SUJET	Session 2012
Épreuve U42 – Étude de dispositions constructives	CODE: 12ITEDI1	Page 17/27

BREVET DE TECHNICIEN SUPÉRIEUR INDUSTRIES PAPETIÈRES

Session 2012

Analyse fonctionnelle et structurelle des systèmes

Sous épreuve U42 : Etude de dispositions constructives

DOSSIER SUJET

Parties	Temps conseillé
Lecture du sujet	30 min
Partie 1	30 min
Partie 2	15 min
Partie 3	15 min
Partie 4	30 min
Partie 5	30 min
Partie 6	1 heure 30 min
Partie 7	1 heure

BTS INDUSTRIES PAPETIÈRES	SUJET	Session 2012
Épreuve U42 – Étude de dispositions constructives	CODE: 12ITEDI1	Page 18/27

1-Étude du réducteur de l'arbre rotor.

Le dessin d'ensemble du réducteur est donné sur le document page 10/27. Le réducteur a les caractéristiques suivantes :

Fréquence de rotation du moteur lié à l'arbre (100) : $N_{moteur} = N_{100} = 1500 \, tr / min$.

Module des roues dentées : m = 5.

Diamètre primitif du pignon arbre (100) : $d_{100} = 180 \ mm$.

Entraxe : $a = 287,5 \, mm$.

- 1.1- Calculer le nombre de dents du pignon arbré (100).
- 1.2- Calculer le nombre de dents de la roue dentée (102).
- 1.3- Calculer le rapport de transmission du réducteur $r = N_{100} / N_{102}$.
- 1.4- En déduire la fréquence de rotation de l'arbre rotor.

2-Étude d'ajustement

Les roulements à rouleaux coniques servant au guidage en rotation de l'arbre rotor (document page7/27) sont montés sur l'arbre avec un ajustement $\emptyset 140~H7~m6$.

- 2.1- A l'aide des documents page 12/27 et page 13/27, calculer les jeux mini et maxi.
- 2.2- De quel type d'ajustement s'agit-il?

3-Chaine de cotes

Sur le document réponse page 24/27, établir la chaine de cotes relative au jeu J_a situé entre l'épaulement du bâti 1 et la bague extérieure du roulement 150 (la nomenclature est donnée document page 11/27).

BTS INDUSTRIES PAPETIÈRES	SUJET	Session 2012
Épreuve U42 – Étude de dispositions constructives	CODE: 12ITEDI1	Page 19/27

La suite de l'épreuve aura pour support l'arbre de réglage de l'entrefer. (voir page 5/27)

4- Calcul de durée de vie des roulements

Le calcul de durée de vie porte sur les roulements (10) servant au guidage en rotation de l'arbre réglage d'entrefer (cf. document page 5/27).

Le roulement étudié est un roulement à rouleaux coniques de type 60 KB 03, celui placé coté vis (à gauche du système). La documentation technique de ce roulement est donnée document DT11.

Une étude préalable a permis de montrer que ce roulement subit une charge radiale $F_r=2500\ daN$ et une charge axiale $F_a=1800\ daN$.

A l'aide des documents page 14/27 et page 15/27 :

- 4.1- Quel est le type de montage de ces roulements ?
- 4.2- Relever les valeurs de C et de e.
- 4.3- Calculer $\frac{F_a}{F_r}$ et le comparer à e.
- 4.4- En déduire les valeurs de X et de Y.
- 4.5- Calculer la durée de vie du roulement en millions de tours.

5-Étude fonctionnelle du corps 1

L'étude porte sur le corps (1) de l'arbre réglage de l'entrefer (document page 5/27).

Sur le document réponse page 25/27 et pour chaque zone ciblée, expliquer la fonctionnalité des surfaces.

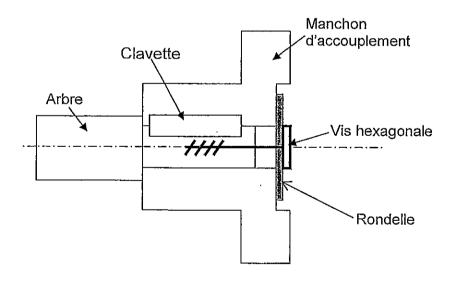
Exemple : perçage et taraudage servant au maintien en position de la pièce (1) et de la pièce (2).

BTS INDUSTRIES PAPETIÈRES	SUJET	Session 2012
Épreuve U42 – Étude de dispositions constructives	CODE: 12ITEDI1	Page 20/27

6-Dessin de définition du corps (1)

A l'aide du document page 5/27, représenter sur le document réponse page 26/27 le corps (1) en :

- Vue de face coupe C-C (celle du dessin)
- Vue de droite
- ½ vue de dessus.


L'échelle de représentation sera celle du dessin d'ensemble sur le document page 5/27.

7-Réalisation d'une liaison encastrement démontable sur l'accouplement

Après une étude de maintenance, on constate une détérioration rapide de la vis de pression réalisant la liaison encastrement entre le manchon d'accouplement et l'arbre. Cette usure est due à des vibrations trop importantes dans le système.

La solution retenue pour remplacer ce système est une solution plus classique avec une vis et une rondelle en bout d'arbre.

Nous étudierons la solution sur le manchon de gauche de l'accouplement, la solution sur l'autre manchon étant identique.

Les documentations techniques concernant le choix de la clavette et de la vis sont données sur les documents page 16/27 et page 17/27.

La construction de la solution se fera sur le document réponse page 27/27 qui est à l'échelle 1.

BTS INDUSTRIES PAPETIÈRES	SUJET	Session 2012
Épreuve U42 – Étude de dispositions constructives	CODE: 12ITEDI1	Page 21/27

- 7.1- Relever sur le document réponse page 27/27 le diamètre de l'arbre, et indiquer la réponse sur le document page 27/27.
- 7.2- A partir du document page 16/27, déterminer les dimensions de la clavette à implantée (une étude préalable à déterminer que la longueur minimale de la clavette est de 30 millimètres). Répondre sur le document page 27/27.
- 7.3- Implanter la clavette sur le document page 27/27.
- 7.4- Le choix d'une vis à tête hexagonale a été retenu. Une étude préalable à permis de déterminer qu'une vis de diamètre 10 suffisait.
 A partir du document page 17/27, relever les dimensions de la vis choisie. Répondre sur le document page 27/27.
- 7.5- La rondelle choisie a un diamètre extérieur D = 50 mm et une épaisseur e= 2 mm.
 Implanter, sur le document réponse page 27/27, la vis et la rondelle choisie.

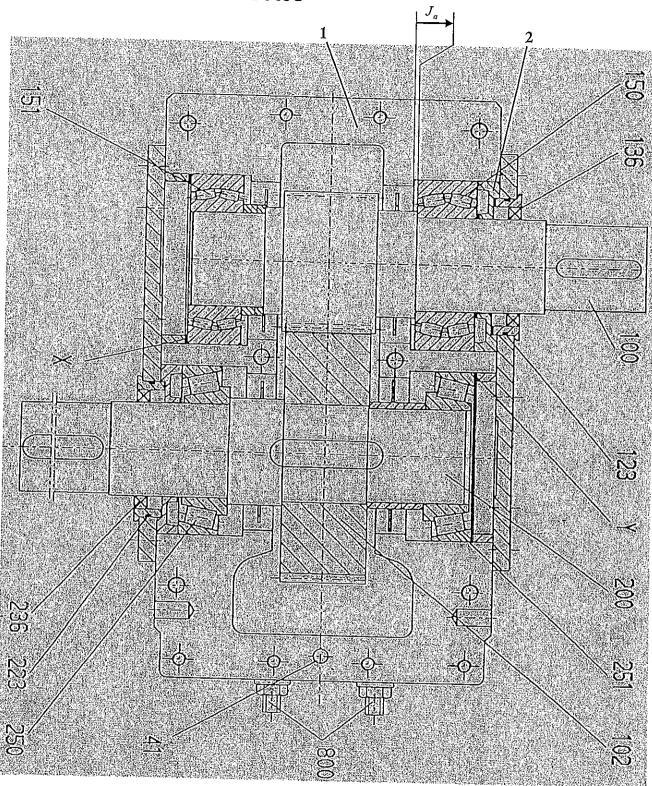
BTS INDUSTRIES PAPETIÈRES	SUJET	Session 2012
Épreuve U42 – Étude de dispositions constructives	CODE: 12ITEDI1	Page 22/27

BREVET DE TECHNICIEN SUPÉRIEUR INDUSTRIES PAPETIÈRES

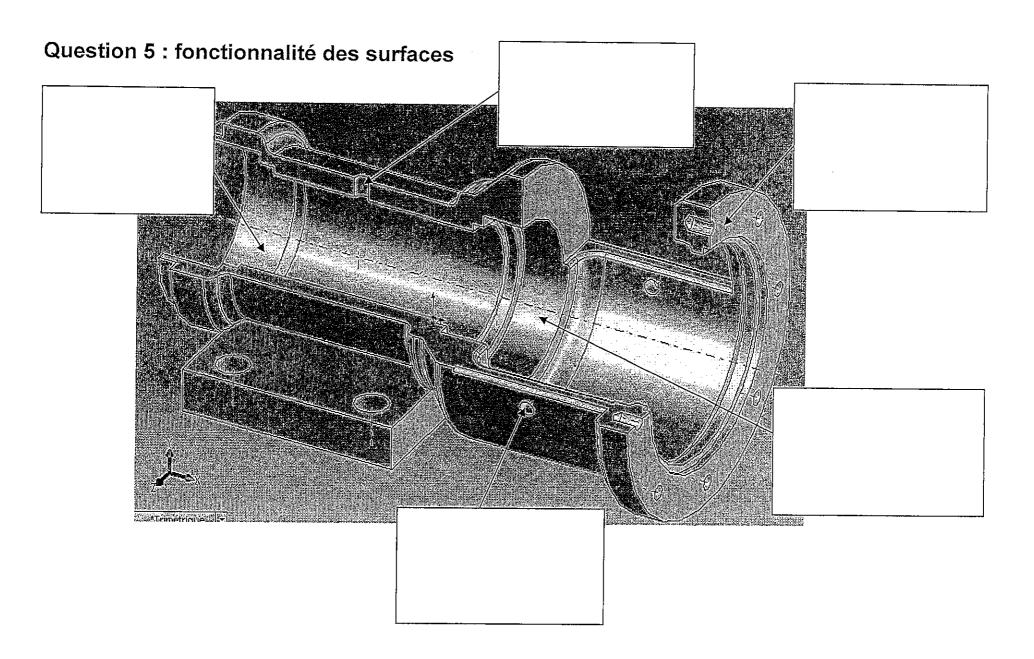
Session 2012

Analyse fonctionnelle et structurelle des systèmes

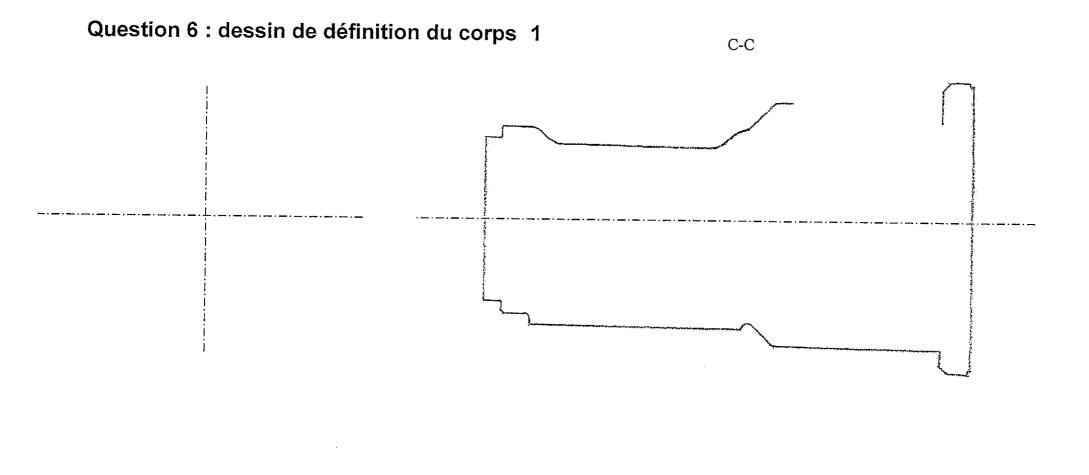
Sous épreuve U42 : Étude de solutions constructives.


DOSSIER RÉPONSE

A rendre impérativement avec la copie

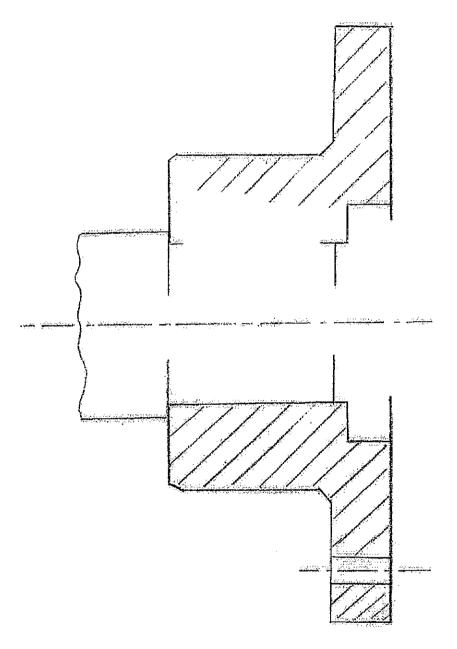

- Page 24/27 chaines de cotes
- Page 25/27 fonctionnalité
- Page 26/27 dessin de définition.
- Page 27/27 conception d'une liaison complète.

BTS INDUSTRIES PAPETIÈRES		
	SUJET	Session 2012
Épreuve U42 – Étude de dispositions constructives	CODE: 12ITEDI1	
T sale contendences	OODL . IZITLDIT	Page 23/27


Question 3 : chaine de cotes

BTS INDUSTRIES PAPETIÈRES	CULET	
	SUJET	Session 2012
Épreuve U42 – Étude de dispositions constructives	CODE: 12ITEDI1	Page 24/27

BTS INDUSTRIES PAPETIÈRES	SUJET	Session 2012
Épreuve U42 – Étude de dispositions constructives	CODE: 12ITEDI1	Page 25/27



BTS INDUSTRIES PAPETIÈRES	SUJET	Session 2012
Épreuve U42 – Étude de dispositions constructives	CODE: 12ITEDI1	Page 26/27

C

Question 7 : conception d'une liaison complète. Échelle 1 : 1

Diamètre de l'arbre : d =

Dimension de la clavette :	Dimension de la vis :	
- Largeur a =	- Diamètre d =	=
- Hauteur b =	- Largeur de la tête k =	=
- Longueur L =	- Longueur sous tête ! =	ļ
	- Longueur filetée x =	

BTS INDUSTRIES PAPETIÈRES	SUJET	Session 2012
Épreuve U42 – Étude de dispositions constructives	CODE: 12ITEDI1	Page 27/27