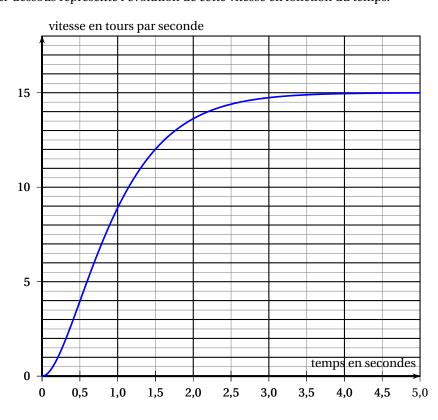
Brevet de technicien supérieur 9 mai 2017 - groupement A1 - CIRA

Exercice 1 11 points

Les 4 parties de cet exercice peuvent être traitées de façon indépendante. Dans cet exercice on s'intéresse à l'évolution, en fonction du temps, de la vitesse de rotation d'un moteur à courant continu.

Partie A: Étude de la vitesse de rotation du moteur lors de son démarrage

Dans un premier temps, le moteur à courant continu utilisé n'est soumis à aucune charge mécanique. La vitesse de rotation de ce moteur, exprimée en tour par seconde (tour/s), est notée ω . Elle dépend du temps t, exprimé en seconde (s), écoulé depuis le démarrage du moteur. La courbe ci-dessous représente l'évolution de cette vitesse en fonction du temps.



- 1. Répondre aux questions suivantes à l'aide de la représentation graphique ci-dessus.
 - **a.** Quelle est la vitesse de rotation du moteur à l'instant t = 0?
 - b. Quelle est la vitesse de rotation du moteur une seconde après le démarrage?
 - **c.** Vers quelle valeur ω_S semble se stabiliser la vitesse de rotation du moteur?
 - **d.** Avec la précision permise par le graphique, déterminer au bout de combien de temps on atteint 95 % de la vitesse stabilisée. Expliquer.

2. On admet que, dans les conditions de fonctionnement étudiées dans la partie A, la vitesse de rotation du moteur est modélisée par la fonction ω définie pour $t \ge 0$ par :

$$\omega(t) = 15 - (30t + 15)e^{-2t}$$

- **a.** On note ω' la fonction dérivée de ω . Justifier que pour $t \ge 0$: $\omega'(t) = 60 t e^{-2t}$.
- **b.** En déduire le sens de variation de la fonction ω sur $[0; +\infty[$.
- **c.** Calculer $\omega'(0)$. Donner une interprétation graphique du résultat.

Le formulaire ci-dessous peut être utilisé pour les parties B et C de l'exercice

Équation différentielle sans second	Solutions sur ℝ		
membre			
ay'' + by' + cy = 0 avec a , b et c des	• Si $\Delta > 0$: $t \mapsto Ae^{r_1t} + Be^{r_2t}$, avec A, B constantes		
constantes réelles.	réelles et r_1 , r_2 les solutions de l'équation caractéris-		
	tique.		
Équation caractéristique : $ar^2 + br + c = 0$	• Si $\Delta = 0$: $t \mapsto (At + B)e^{rt}$, avec A, B constantes		
de discriminant Δ .	réelles et r la solution de l'équation caractéristique.		
	• Si $\Delta < 0 : t \mapsto e^{\alpha t} [A\cos(\beta t) + B\sin(\beta t), \text{ avec } A, B]$		
	constantes réelles et $\alpha + i\beta$ et $\alpha - i\beta$ les solutions de		
	l'équation caractéristique.		

Partie B: Résolution d'une équation différentielle permettant d'obtenir la vitesse de rotation

Sous certaines conditions de charge, la vitesse de rotation d'un moteur à courant continu soumis à une tension constante U, exprimée en Volt (V), est solution de l'équation différentielle

(E):
$$\frac{1}{4}y'' + y' + y = \frac{U}{k}$$
, où k est une valeur caractéristique du moteur.

1. On note (E_0) l'équation homogène associée à (E). On a donc :

$$(E_0): \frac{1}{4}y'' + y' + y = 0.$$

Déterminer les solutions de l'équation différentielle (E_0) .

- **2.** Vérifier que la fonction constante $g: t \mapsto \frac{U}{k}$ est une solution de l'équation différentielle (E).
- **3.** En déduire les solutions de l'équation différentielle de (E).
- **4.** En prenant $k = \frac{2}{3}$ et U = 10 V montrer que la fonction ω donnée dans la question A. 2. est la solution de l'équation différentielle (E) vérifiant les conditions initiales y(0) = 0 et y'(0) = 0.

Partie C : Détermination de la vitesse de rotation d'un moteur à courant continu à partir des principes de la physique

D'une manière plus générale on démontre que la vitesse de rotation du moteur alimenté par une tension continue U vérifie l'équation différentielle

$$(E_1): \quad \alpha^2 y'' + 2m\alpha y' + y = \frac{U}{k},$$

où α , m et k sont des paramètres strictement positifs dépendant des caractéristiques physiques du moteur étudié (résistance, inductance, moment d'inertie).

Dans cette partie on prend : U = 10 V; $\alpha = 0.3$; $m = 0.6 \text{ et } k = \frac{2}{3}$.

L'équation différentielle (E_1) s'écrit donc :

$$0.09y'' + 0.36y' + y = 15.$$

- **1.** Résoudre dans \mathbb{C} l'équation : $0,09z^2 + 0,36z + 1 = 0$.
- **2.** Parmi les quatre fonctions proposées ci-dessous, une seule est solution de l'équation différentielle (E_1) et vérifie les conditions initiales y(0) = 0 et y'(0) = 0. Quelle est cette fonction? Justifier la réponse.

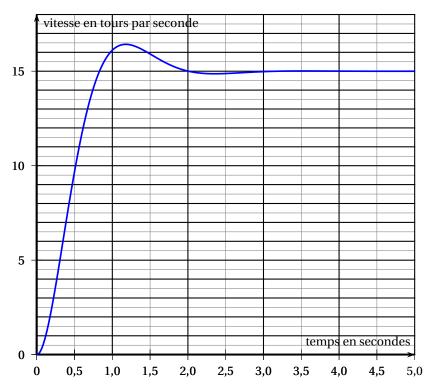
Fonction 1: $t \mapsto 15 \left[1 - e^{-\frac{8}{3}t} \left(\cos(2t) + \frac{3}{4} \sin(2t) \right) \right]$

Fonction 2: $t \longrightarrow 15 \left[1 - e^{-2t} \left(\cos\left(\frac{8}{3}t\right) + \frac{3}{4}\sin\left(\frac{8}{3}t\right)\right)\right]$

Fonction 3: $t \mapsto 15e^{\frac{2}{3}t} - 15e^{-\frac{14}{3}t}$

Fonction 4: $t \mapsto 15 - e^{-2t} \left[\cos \left(\frac{8}{3} t \right) + \frac{3}{4} \sin \left(\frac{8}{3} t \right) \right]$

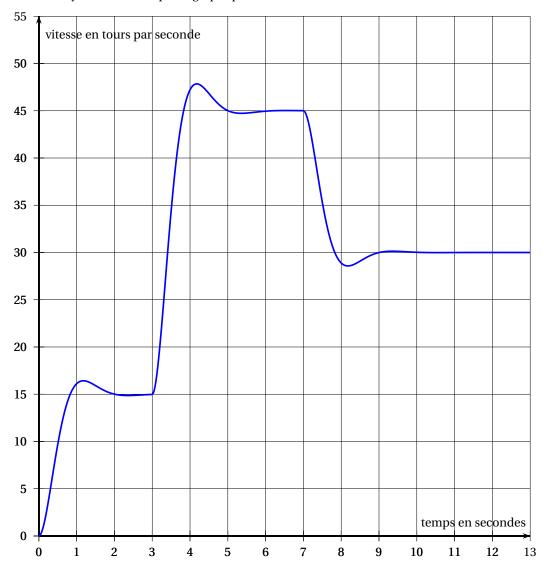
3. La solution de l'équation différentielle (E_1) qui vérifie les conditions initiales y(0) = 0 et y'(0) = 0 modélise l'évolution de la vitesse du moteur en fonction du temps dans les conditions étudiées dans la partie C. Elle est représentée ci-dessous.



D'après cette modélisation, quelle est la vitesse maximale du moteur? À quel moment, environ, est-elle atteinte?

Partie D: Comportement d'un moteur soumis à différents sauts de tension

Une boucle de régulation de vitesse permet à présent de faire fonctionner le moteur à différentes vitesses. La tension d'entrée vaut successivement 10 V, 30 V puis 20 V. La vitesse de rotation du moteur est alors analysée et illustrée par le graphique ci-dessous.



- **1.** Déterminer à l'aide du graphique les trois instants où les tensions ont été modifiées. On ne demande pas de justification.
- **2.** Représenter sur le document réponse (page 9) la tension d'entrée *e*, exprimée en Volt, appliquée aux bornes du moteur en fonction du temps *t*, exprimé en seconde.
- 3. On désigne par ${\mathscr U}$ la fonction causale unité. On rappelle que :

$$\mathcal{U}(t) = 0$$
 si $t < 0$ et $\mathcal{U}(t) = 1$ sinon.

Pour exprimer la tension d'entrée e(t) appliquée aux bornes du moteur à l'instant t un étudiant propose l'expression $e(t) = 10\mathcal{U}(t) + 30\mathcal{U}(t-3) - 20\mathcal{U}(t-7)$ et remplit le tableau donné sur le document réponse.

- a. Compléter, sur le document réponse, le tableau rempli par l'étudiant.
- **b.** Une fois qu'il a terminé de remplir le tableau, l'étudiant se rend compte qu'il a donné une expression inexacte de e(t). Expliquer pourquoi.
- **c.** Donner l'expression exacte de e(t). On n'attend pas de justification.

Exercice 2 9 points

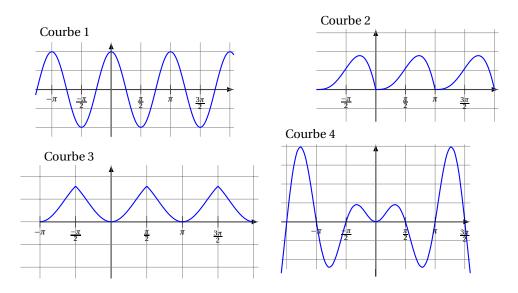
Les deux parties suivantes sont indépendantes. Elles peuvent être traitées dans n'importe quel ordre

PARTIE A:

On appelle f la fonction définie sur \mathbb{R} , paire, périodique de période π , vérifiant :

$$f(t) = t \sin(t)$$
 pour $t \in \left[0; \frac{\pi}{2}\right]$.

1. Parmi les quatre courbes suivantes quelle est celle qui représente la fonction f? On n'attend pas de justification.



2. On admet que la fonction f est développable en série de Fourier.

On note S son développement en série de Fourier.

On rappelle que:

$$S(t) = a_0 + \sum_{n=1}^{+\infty} (a_n \cos(n\omega t) + b_n \sin(n\omega t)), \text{ avec } \omega = \frac{2\pi}{T}, T \text{ période de } f;$$

$$a_0 = \frac{1}{T} \int_a^{a+T} f(t) dt. \text{ Pour } n \geqslant 1 : a_n = \frac{2}{T} \int_a^{a+T} f(t) \cos(n\omega t) dt \text{ et } b_n = \frac{2}{T} \int_a^{a+T} f(t) \sin(n\omega t) dt$$
avec a constante réelle quelconque.

a. Justifier que $b_n = 0$ pour tout n entier naturel supérieur ou égal à 1.

- **b.** Montrer que la fonction g définie pour tout réel t par $g(t) = -t\cos(t) + \sin(t)$ est une primitive de la fonction définie sur \mathbb{R} par $t \mapsto t\sin t$.
- **c.** La fonction étant paire et de période π , a_0 vérifie $a_0 = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} f(t) dt$. Vérifier que $a_0 = \frac{2}{\pi}$. Écrire les étapes du calcul effectué.
- **3.** On admet que pour tout entier naturel $n \ge 1$: $a_n = \frac{2}{\pi}(-1)^n \left(\frac{1}{(2n+1)^2} + \frac{1}{(2n-1)^2}\right)$ Donner les valeurs de a_1 et a_2 arrondies au millième.
- **4.** On note f_e le nombre positif vérifiant $f_e^2 = \frac{1}{\pi} \int_0^{\pi} f^2(t) dt$.

On admet que l'expression $a_0^2+\frac{1}{2}\sum_{n=1}^2(a_n^2+b_n^2)$, obtenue d'après la formule de Parseval, permet d'obtenir la valeur approchée de f_e^2 au millième.

- **a.** Calculer la valeur approchée de f_e^2 au millième.
- **b.** Si f modélise un signal de période π , que représente f_e ?

PARTIE B : Étude de quelques propriétés d'un filtre numérique

• Le signal causal d'entrée d'un filtre numérique, noté e(n), est l'échelon unité discret.

On a donc :
$$e(n) = \begin{cases} 0 & \text{si} & n < 0 \\ 1 & \text{si} & n \ge 0 \end{cases}$$

- Le signal causal de sortie de ce filtre numérique est noté x(n) et vérifie, pour tout entier relatif n: x(n) x(n-2) = 0,04e(n-1). (*)
- **1. a.** Justifier que x(0) = 0.
 - **b.** Calculer x(1), x(2), x(3), x(4) et x(5). Détailler au moins un des calculs sur la copie.

Dans les questions 2 et 3, on note E(z) et X(z) les transformées en Z respectives des signaux causaux e(n) et x(n).

On donne les formules suivantes :

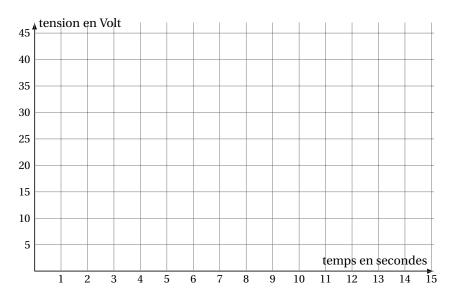
Signal causal	Transformée en Z			
$n \rightarrow 1$	$\frac{z}{z-1}$			
$n \rightarrow d(n)$				
où $d(0) = 1$ et $d(n) = 0$ sinon.	1			
$n \rightarrow n$	$\frac{z}{(z-1)^2}$			
$n \rightarrow a^n$ avec a réel non nul.	$\frac{z}{(z-a)}$			
Propriétés				
$n \rightarrow x(n)$	X(z)			
$y: n \to a^n x(n)$ avec a réel non nul	$Y(z) = X\left(\frac{z}{a}\right)$			
$y: n \to x (n - n_0) \text{ pour } n \geqslant n_0$	$Y(z) = z^{-n_0} X(z)$			
$y: n \to x(n+1)$	Y(z) = z[X(z) - x(0)]			
$y: n \to x(n+2)$	$Y(z) = z^{2} [X(z) - x(0) - x(1)z^{-1}]$			

- **2. a.** Quelle est l'expression de E(z)?
 - **b.** Exprimer en fonction de z la transformée en Z de 0,04e(n-1).

- **c.** Exprimer en fonction de z et de X(z) la transformée en Z de x(n) x(n-2).
- **d.** Déduire de l'égalité (*) que : $X(z) = \frac{0.04z^2}{(z-1)^2(z+1)}$.
- **3.** On admet que X(z) peut s'écrire : $X(z) = \frac{0.02z}{(z-1)^2} + \frac{0.01z}{z-1} \frac{0.01z}{z+1}$.
 - **a.** En déduire que pour tout entier naturel n: $x(n) = 0.02n + 0.01(1 (-1)^n)$.
 - **b.** On rappelle que : $(-1)^{2n+2} = 1$ et $(-1)^{2n+1} = -1$. Montrer que x(2n+1) = x(2n+2) pour tout entier naturel n.
 - **c.** Représenter dans un repère à tracer sur la copie les termes du signal causal x(n) pour n compris entre -2 et 6.

DOCUMENT RÉPONSE à rendre avec la copie

EXERCICE 1 - PARTIE D - Question 2:



EXERCICE 1 - PARTIE D - Question 3. a.:

t	$-\infty$ () ;	3 7	7 +∞
$10\mathscr{U}(t)$				
$30\mathscr{U}(t-3)$				
$-20\mathscr{U}(t-7)$				
e(t)				