Télésiège du Glacier de l'Alpe d'Huez (Isère)"

DOCUMENTS REPONSES CORRIGES

→ IMPORTANT

- Répondre de préférence sur les feuilles réponses, un complément pourra être apporté sur une feuille de copie en précisant bien le numéro de la question traitée,
- Rendre toutes les feuilles réponses agrafées dans l'ordre.

QA - Etude de la motorisation du télésiège : (18 points) 3 h 30 min

QB - Freinage d'arrêt : (4 points) 0 h 30 min

QC - Alimentation en énergie : (10 points) 2 h

QD - Etude de la logique de frein : (8 points) 2 h

Note globale: / 40 points

Partie A: Etude de la motorisation du télésiège

QA-11:

Relations utilisées	Données	Applications numériques
	L=1946 m	$N_S = 1946/20,7 = 94 \text{ sièges}$
Ns=L/I	L=20,7 m	
		Soit 47 montants
4		

QA-12:

Relations utilisées	Données	Applications numériques
-/-	L = 1946 m	$T_m = 1946/(2*2,3) = 423$ secondes
$T_{m}=L/(2*V_{1})$	$V_1 = 2.3 \text{m}$	
- 1		Soit 7 mn et 3 s
, ,		
· ·		

OA-13:

<u>VA-13.</u>	100007 400004	
Relations utilisées	Données	Applications numériques
	$N_S = 94$	W = 47*4*80*9,81*(3300-2932) = 54 295 603
$M_{\text{mon}} = N_{\text{S}} (M_{\text{n}} + 4*M_{\text{P}})/2$	$M_n = 160 \text{ kg}$	path.
$M_{\rm desc} = N_{\rm S} (M_{\rm n})/2$	$M_p = 80 \text{ kg}$	W = 54,3 MJ
$(M_{mont} - M_{desc}) = 4*M_p*N_S/2$	$H_a = 3300 \text{ m}$	A)
	$H_d = 2932 \text{ m}$	
$W = (M_{mont} - M_{desc})g(H_a - H_d)$	$G = 9.81 \text{ m/s}^2$	

QA-14:

Données	A multi-poti on a mana ómi gazo a
20111100	Applications numériques
	$P = 52,3*10^6/423 = 128\ 358$
_m = 423 secondes	
	P = 128 kW
	· · · · · · · · · · · · · · · · · · ·
	= 54,3 MJ = 423 secondes

QA-21:

Relations utilisées	Données	Applications numériques
$V_1 = \pi D_P N_{\text{mot therm}} / 60 \text{ k k'}$	$V_1 = 1,1 \text{ m/s}$	$N_{\text{mot therm}} = 60 * 1,1 * 114.5 * 3.37/(4\pi)$
	$D_P = 4 \text{ m}$	
	k = 114,5	$N_{\text{mot therm}} = 2027 \text{ tr/mn}$
	k' = 3.37	

QA-22:

Relations utilisées	Données	Applications numériques
	$D_P = 4 \text{ m}$	$N_{\text{mot \'elec}} = 60 * 2.3 * 114.5 / (4\pi)$
	k = 114,5	
$V_2 = \pi D_P N_{\text{mot élec}} / 60 \text{ k}$	k' = 3.37	$N_{\text{mot \'elec}} = 1258 \text{ tr/mn}$
	$V_2 = 2.3 \text{ m}$	
1.0		

<u>OA-23:</u>

Relations utilisées	Données	Applications numériques
$C_p = T*D_p/2 - t*D_p/2$	T = 88kN	$C_p = (8800-25000)*4/2 = 126 \text{ kNm}$
$C_p = (T-t)*D_p/2$	T = 25 kN	
107	$D_p = 4$	$C_p = 126 \text{ kNm}$
		•
₩.	100 1	

QA-24:

Relations utilisées	Données	Applications numériques
$C_{p/\text{ axe mot \'elec}} = C_p/(k*\eta_R)$	$C_p = 126 \text{ kNm}$	$C_{p/\text{ axe mot \'elec}} = 126000/(114,5*0.96)$
	K = 114,5	and the second s
	$\eta_{\rm R} = 0.96$	$C_{p/axe mot élec} = 1146Nm$
	47	A)
		$C_{p/\text{ axe mot \'elec}} = 1,15kNm$
		T/O

QA-25:

Relations utilisées	Données	Applications numériques
$M=0.5*N_s*(M_n+M_p*4)+M_C*L/2)$	$N_{\rm s} = 94$	M = 0.5*94*(160+80*4)+5,74*1946/2
_	$M_n = 160 \text{ kg}$	
	$M_P = 80 \text{ kg}$	M = 28 145 kg
	$M_C = 5,74 \text{ kg/m}$	
	L = 1946 m	

QA-26:

<u> </u>		
Relations utilisées	Données	Applications numériques
$M'=0.5*N_s*M_n+M_C*L/2$	$N_{\rm s} = 94$	M' = 0.5*94*160+5,74*1946/2
	$M_n = 160 \text{ kg}$	
	$M_C = 5{,}74 \text{ kg/m}$	$M' = 13 \ 105 \ kg$
	L = 1946 m	

QA-27:

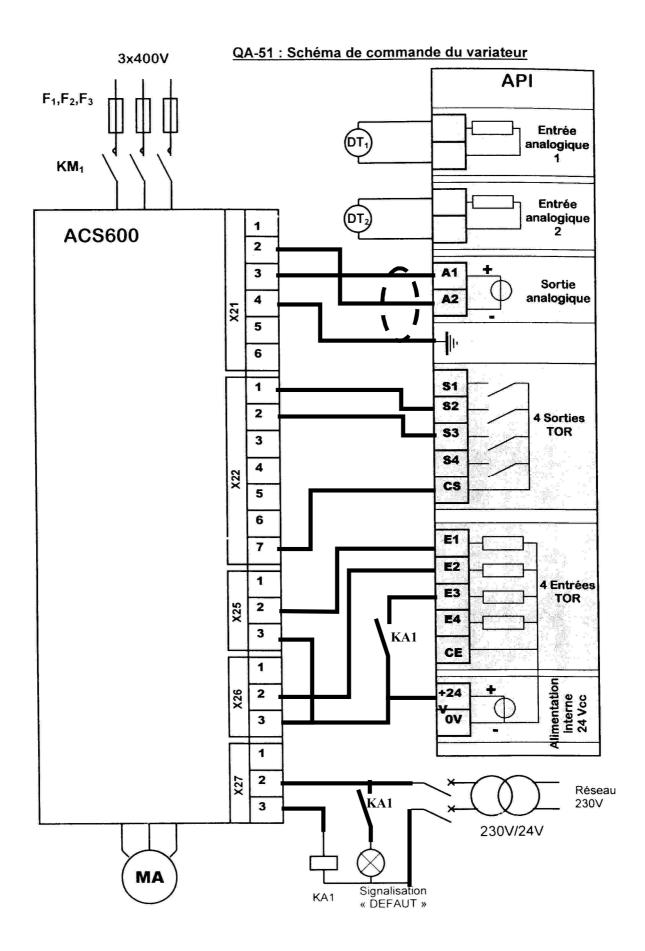
Relations utilisées	Données	Applications numériques
$Jd\Omega/dt = C_{dem}-C_P$	M = 28 145 kg	$J_{M\&M'} = ((28145+13105)*2^2/(114,5^2)$
	$M' = 13 \ 105 \ kg$	$J_{M\&M'} = 12,6 \text{ kgm}^2$
$J = J_m + J_{eq} + J_{M\&M'}$	$a = 0.5 \text{ m/s}^2$	$C_{dem} = (12,6+15+8.2)*0,5*114,5/2+1146$
-	R = 2 m	$C_{\text{dem}} = 2171 \text{ Nm}$
$0.5 \text{ J}_{\text{M&M'}} \Omega^2 = 0.5 (\text{M+M'}) v^2 / \eta$	k = 114.5	
	$\eta = 0.96$	
$v = \Omega_{MOT} * R/k$		Remarque:
1.3		Le corrigé officiel tenait compte du
$d\Omega/dt = a * k / R$		rendement, ce qui est faux!!
4		

OA-28:

Relations utilisées	Données	Applications numériques
$t = V_2/a$	$V_2 = 2.3 \text{ m/s}$ A = 0.5 m/s ²	t = 2,3/0,5
	90	t = 4,6 s

QA-31: Couple équivalent thermique Cet

Relations utilisées	Données	Applications numériques
$C_{et} = \sqrt{\frac{C_{dem}^{2} * t_d + C_m^{2} * (T - t_d)}{T}}$	$C_{dem} = 2100$ Nm $t_d = 8 \text{ s}$ $C_m = 1050 \text{ Nm}$ T = 3600/10	$C_{et} = \sqrt{\frac{2100^2 * 8 + 1050^2 * 352}{360}}$ $C_{et} = 1084 \text{ Nm}$
QA-32: Critères de choix et référe		


Relations utilisées	Données	Applications numériques
Gammes fontes (Coût)	$C_n = 1084 \text{ Nm}$ $C_{DD} = 2100 \text{ Nm}$ $N_n = 1300 \text{ tr/mn}$	M2BA315MLA
$\begin{array}{c} C_n \\ C_{DD} \\ N_n \end{array}$	1300 471111	

Télésiège du glacier **Documents réponses partie A** page 4/13

QA-41: Critères de choix et référence du variateur (sans l'altitude)

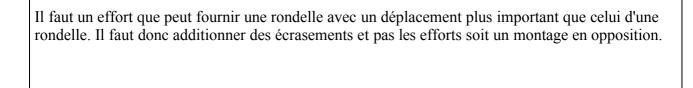
Relations utilisées	Données	Applications numériques
	545 A	11
Courant		ACS 607-0400-3
	400V	
Tension réseau		
//		
1.0		
6/10		
67.		

QA-42: Choix et référence du moteur e	n tenant com	pte de l'altitude	
Relations utilisées	Données	Applications numériques	
	$\begin{array}{c c} Donn\acute{e}es & Applications numériques \\ \hline I_{n 40^\circ} = 600 \\ H_a = 3300 \ m \\ \hline I_{MAX} = 462 A \\ \hline \end{array}$		
Référence du variateur	Validation d	e la nouvelle référence	
Il faut changer de variateur $I_{n40^\circ} = I_{MAX}/(100\%1\%\text{*}(H_a1000)/100)$	Validation de la nouvelle reference $I_{n40^\circ} = 545/(100\%\text{-}1\%\text{*}(3300\text{-}1000)/100)$ $I_{n40^\circ} = 707 \text{ A}$ ACS 607-0490-3 avec $I_{\text{MAX}} = 578 \text{ A}$		

Partie B : Freinage d'arrêt

QB-1:

Relations utilisées	Données	Applications numériques
$C_F = 2*F_T*D_F/2$	$C_F = 2500N$	$F_T = 2500*2/(0,69*2)$
/ _	$D_F = 0.69 \text{ m}$	
107		$F_{\rm T} = 3623 \text{ N}$
1		
1.0		
6/0		
4-1		
6-7		
4/		


QB-2:

Relations utilisées	Données	Applications numériques
$F_{N} = F_{T}/F_{O}$	$F_0 = 0.3$	$F_N = 3623/0.3$
	$F_T = 3623 \text{ N}$	
	7.63	$F_0 = 12\ 077\ N$
	(4)	
	, dille.	
		CV.
		· / /-

QB-3:

Données	Applications numériques
$\begin{array}{c} Donn\acute{e}s \\ D_{Arondelles} = 0,19 \text{ m} \\ D_{AB} = 0.13 \text{ m} \\ F_{N} = 1200 daN \end{array}$	Applications numériques $F_R = 12\ 000*0.19/0.13$ $F_R = \textbf{8211 N}$
	$D_{Arondelles} = 0.19 \text{ m}$ $D_{AB} = 0.13 \text{ m}$

OB-4:

QB-5:

$$P_{\text{max}} = F*0.75/0.5 = 8500 *0.75/0.5 = 12750 \text{ N}$$

Les seules rondelles capable de fournir cette effort sont les 40,5 x 70 x 4.

Leur écrasement est alors de 0,5*H soit 0,8mm

Les 12 rondelles s'écrasent au total de 12*0,8 soit 9,6mm.

Partie C: Alimentation en énergie

QC-11: Bilan de puissance

 $P_{abs mot} = P_{mot} / \eta_{mot} = 280/0.967 = 290 \text{ kW}$

 $P_{abs \ Var} = P_{abs \ mot} / \eta_{var} = 290 / .98 = 295 \ kW$

 $S_{var} = P_{abs \ Var}/0.93 = 318 \ kVA$

 $Q_{var} = P_{abs\ Var} * tg \ \phi = 295 * 0.395 = 117 \ kVAr$

 $P_{AUX} = S_{AUX} / cos \varphi = 20*0.8 = 16 \text{ kW}$

 $Q_{AUX} = S_{aux} * \sin \varphi = 20 * 0.6 = 12 \text{ kVAr}$

I ligne = $S / (\sqrt{3}U) = 337000 / (1.732*400) =$

P = 311 kW Q = 129 kVAr

S = 337 kVA

I ligne =486 A

QC-12: Harmoniques de courant

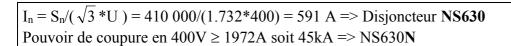
Un PD 3 ne présente pas d'harmonique paires et multiple de 3. Donc les seules harmoniques présentes sont 5 et 7.

QC-21: Courant fictif I'z

Lettre de sélection et	Facteurs de	Courant fictif I'z
justification	correction et	~ //
	justification	
Câbles enterrés => D		K = 1*1*1*1,13*1,07*1*,08 =
1 circuit =>	$K_4 = 1$	K = 0.967
Jointif 1 couche =>	$K_5 = 1$	$I'_Z = I_Z/K = 450/0.967 =$
Terrain humide =>	$K_6 = 1,13$	$I'_Z = 465A$
Sol à 10°C =>	$K_7 = 1,07$	
Neutre non chargé =>	$K_n = 1$	
Pas symétrie =>	$K_s = 0.8$	

OC-22: Nombre et section des conducteurs

	Conducteurs de phase	Conducteurs de neutre	Conducteurs de protection
Nombre	2	1	1
Section	120mm ²	120mm ²	120mm ²
Justification éventuelle	La section nécessaire est de 240mm² Il ne faut pas dépassé 150mm². On utilise donc 2 câbles	Le neutre étant faiblement chargé on peut réduire sa section, qui doit resté supérieur à 16 mm² Pour réduire les coûts il est judicieux de prendre la même section que la phase.	Le conducteur de protection doit avoir au moins la même section que le neutre.


QC-31: Rôle joué par le disjoncteur de source DJS

y C	le surcharges et les courts-circuits, et assure la protection des
personnes sur défaut d'isolement.	
	(O)
	*/O

QC-32: Calcul du courant de court-circuit

$$I_{CC} = I_n/X'_d = S_n/(\sqrt{3} *U*X'_d) = 410\ 000/(1.732*400*0.3)$$
 $I_{CC} = 1972\ A$

QC-33: Choix du disjoncteur et réglages

Protection différentielle => **STR23SE** Réglage $I_r = I_Z/I_n = 450/630 = 0,71$

 $I_{MAX}*K = 1972*0.15 = 296A$

Réglage I_m/I_r à $I_m = 1972-296 = 1676$ A

 $I_{\rm m}/I_{\rm r} = 1676/450 = 3.7$

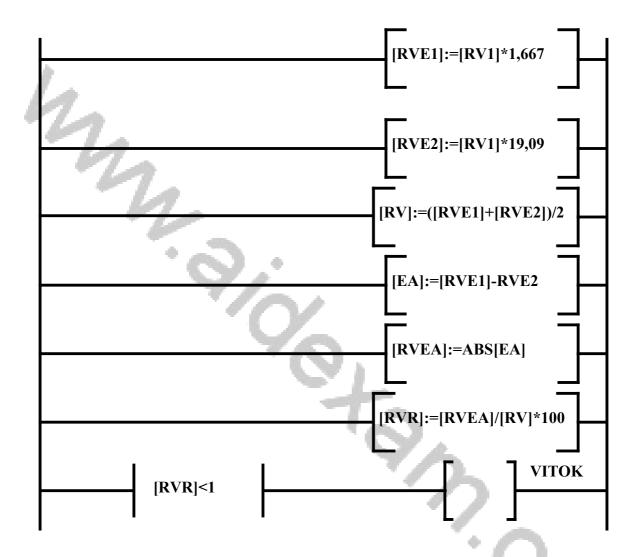
QC-34: Protection des personnes

Cause de la limitation de la longueur des câbles :

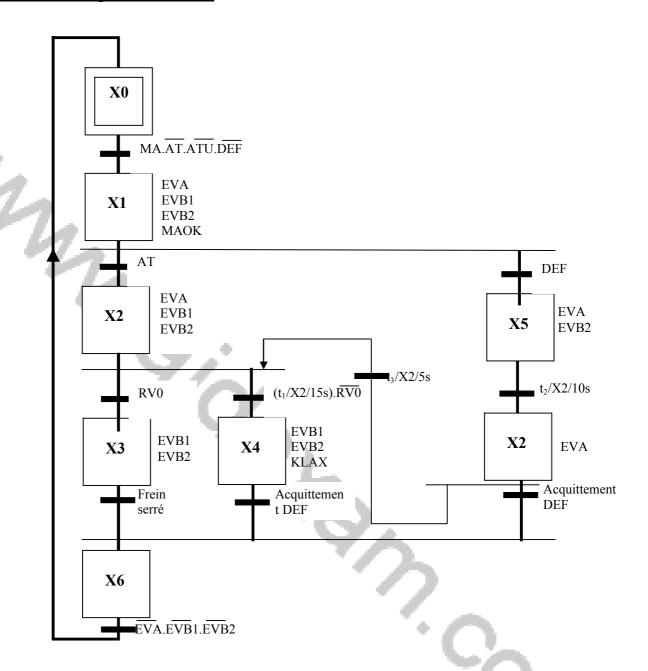
La résistance de la ligne limite le courant de CC. Or uu défaut d'isolement provoque un CC. Si la longueur est trop importante, ce courant de CC sera insuffisant pour faire sauter le disjoncteur.

Vérification:

$$L_{max} = 0.8*V*S_{ph}/(r*(1+m)*I_{mag}) = 0.8*400*240/(22.5*10^{-3}*(1+2)*1676)$$


 $L_{\text{max}} = 678 \text{m}$

Recommandations en circuits terminaux


Il faut placer sur les circuit terminaux un **DDR** (disjoncteur différentiel résiduel)

Partie D : Etude de la logique de frein

QD-1: Elaboration du signal VITOK

OD-2: Etude de la gestion des freins

