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Problème 1 : étude d’une suite

Pour tout réel α 0, on appelle suite associée à α la suite (un) définie par u0 =α et

un+1 = 1

n +1
+

un pour tout entier n  0.

Partie 1 : Généralités

1) Soit α un réel positif. Démontrer que la suite (un) associée à α vérifie un  0, pour tout entier n  0.

2) Soit α et β deux réels tels que 0  α β. On note (un) la suite associée à α et (vn) la suite associée
à β. Démontrer que un  vn , pour tout entier n  0.

3) On note (wn) la suite associée à 0. Démontrer que wn  1, pour tout entier n  1.

4) Soit α un réel positif ou nul. On suppose que la suite (un) associée à α converge vers un réel ℓ.
Déterminer la valeur de ℓ.

5) Soit α un réel tel que α> 3+
5

2
. Justifier que la suite associée à α est strictement décroissante. Que

peut-on en déduire en terme de convergence ?

Partie 2 : Un cas particulier

Dans toute cette partie, on note (tn) la suite associée à 4 et on définit la suite (sn) par

sn = n(tn −1) , pour tout entier n  0.

6) Démontrer, pour tout entier n  1, l’encadrement :

1+ 2

n
 tn  1+ 3

n
.

7) Démontrer, pour tout entier n  1, l’encadrement :

2  sn  2+ 6

n
.

8) Déterminer la limite de
tn −1− 2

n
1

n

quand n tend vers +∞.

Partie 3 : Retour au cas général

9) Soit α un réel positif ou nul. La suite (un) associée à α est-elle convergente ?

10) Déterminer la limite de
un −1− 2

n
1

n

quand n tend vers +∞.
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Problème 2 : bonbons cachés

Partie 1 : Sophie et Germain testent trois boîtes

Germain dispose de trois boîtes opaques. Il propose un jeu à Sophie qui pourrait permettre à cette der-
nière de gagner un paquet de bonbons.

1) Dans un premier temps, après avoir caché un paquet de bonbons dans l’une de ces boîtes en lais-
sant les deux autres boîtes vides, Germain propose à Sophie de choisir une de ces trois boîtes et de
l’ouvrir pour en remporter le contenu éventuel. Comme les boîtes sont opaques, Sophie en choisit
une au hasard. Avec quelle probabilité choisit-elle la boîte contenant le paquet de bonbons ?

2) Dans un second temps, après avoir caché à nouveau un paquet de bonbons dans l’une de ces trois
boîtes en laissant les deux autres boîtes vides, Germain propose à Sophie un jeu qui comporte deux
tours :

— Au premier tour, Sophie choisit une des trois boîtes disposées devant elle, la désigne à Germain
mais ne l’ouvre pas.

— Au second tour, Germain élimine une boîte vide parmi les deux boîtes que Sophie n’a pas choi-
sies, puis laisse à Sophie la possibilité de modifier son choix.

Une fois ce second tour achevé, Sophie ouvre la boîte qu’elle a choisie et découvre si elle a gagné le
paquet de bonbons.

a) Si, au second tour, Sophie décide de conserver le choix fait au premier tour, quelle probabilité
a-t-elle de gagner ?

b) Si, au second tour, elle décide de modifier le choix fait au premier tour, quelle probabilité a-t-
elle de gagner ?

c) Quelle est la meilleure stratégie pour Sophie : conserver son choix initial, ou le modifier ?

Dans toute la suite du problème, soit n un entier supérieur ou égal à 3. Germain dispose de n boîtes
opaques, numérotées par un entier entre 1 et n. Avant le début du jeu, il cache un paquet de bonbons dans
l’une de ces boîtes ; les n −1 autres boîtes sont vides. Sophie et Germain vont jouer selon plusieurs règles
différentes. L’enjeu pour Sophie est dans tous les cas de choisir une boîte en maximisant la probabilité de
gagner le paquet de bonbons.

Partie 2 : Une stratégie pour Sophie

3) Après que Germain a caché un paquet de bonbons dans l’une de ces boîtes, un premier jeu se dé-
roule en deux tours :

— Au premier tour de jeu, Sophie choisit une boîte, la désigne à Germain mais ne l’ouvre pas.

— Au second tour, Germain élimine n −2 boîtes vides parmi les n −1 boîtes que Sophie n’a pas
choisies, et laisse à Sophie la possibilité de modifier son choix.

Une fois ce second tour achevé, Sophie ouvre la boîte qu’elle a choisie et découvre si elle a gagné le
paquet de bonbons.

a) Avec quelle probabilité Sophie a-t-elle choisi la boîte gagnante au premier tour de jeu ?

b) Au second tour, Sophie a-t-elle intérêt à conserver son choix initial ou à modifier son choix ?

Pour corser la situation, Sophie et Germain inventent un second jeu qui se déroule maintenant en n −1
tours. Avant le début du jeu, Germain cache un paquet de bonbons dans une des boîtes.

— Au premier tour : Sophie choisit l’une de ces boîtes, la désigne à Germain mais ne l’ouvre pas.

Pour chaque ℓ entier entre 2 et n −1 :
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— Lors du ℓ-ième tour de jeu : Germain élimine, selon son bon plaisir, une boîte parmi les boîtes
vides autres que celle que Sophie a choisie au tour précédent ; puis il laisse à Sophie la possibilité
de modifier son choix.

Une fois ces n−1 tours de jeu écoulés, Sophie ouvre la boîte qu’elle a choisie au dernier tour, et découvre
si elle a gagné le paquet de bonbons.

À partir de maintenant, et jusqu’à la fin de ce problème, Sophie et Germain jouent à ce jeu.

4) a) Si Sophie décide de conserver son choix initial pendant les n −1 tours, quelle probabilité a-t-
elle de gagner ?

b) Comment peut-elle procéder pour s’assurer de gagner avec probabilité au moins (n −1)/n ?

Partie 3 : Une stratégie pour Germain

Soit un entier n  3. Germain et Sophie continuent de jouer à ce même jeu en n −1 tours. Germain sou-
haite empêcher Sophie de gagner avec une probabilité strictement supérieure à (n − 1)/n. Pour cela, il
adopte la stratégie suivante :

— Avant le début du jeu, Germain sélectionne au hasard la boîte dans laquelle il cache le paquet de
bonbons.

— À partir du second tour du jeu et jusqu’à la fin, Germain élimine une boîte qu’il sélectionne au
hasard parmi les boîtes vides (et non encore éliminées) autres que celle que Sophie vient de choisir.

Pour un entier ℓ tel que 1  ℓ  n −1, on note sℓ le numéro de la boîte qu’a choisie Sophie lors du ℓème

tour de jeu. Pour un entier ℓ tel que 2  ℓ  n −1, on note gℓ le numéro de la boîte qu’a éliminée Ger-
main lors du ℓ-ième tour de jeu. Plaçons nous au tour ℓ après que Germain a éliminé la boîte numéro gℓ.
Soit b le numéro d’une boîte non encore éliminée ; on note pℓ(b) la probabilité, connaissant les numé-
ros s1, s2, . . . , sℓ−1 et g2, g3, . . . , gℓ, que la boîte numéro b contienne le paquet de bonbons.

5) Donner, pour tout entier b tel que 1  b  n, la probabilité p1(b).

6) Soit ℓ un entier tel que 2  ℓ n−1, et soit b un numéro de boîte distinct de g2, g3, . . . , gℓ et de sℓ−1.
Démontrer :

pℓ(sℓ−1)

pℓ(b)
= n −ℓ

n +1−ℓ

pℓ−1(sℓ−1)

pℓ−1(b)
·

7) Soit ℓ un entier tel que 2  ℓ n −1, et soit b et c deux numéros de boîtes distincts de g2, g3, . . . , gℓ.
Démontrer :

pℓ(b)  n −ℓ

n −1
pℓ(c) .

8) En déduire que, si Germain applique la stratégie présentée ci-dessus, Sophie ne pourra jamais s’as-
surer de gagner avec une probabilité strictement supérieure à (n −1)/n.

Partie 4 : Une stratégie pour Sophie et Germain

Évariste, un ami de Sophie et Germain, décide de leur donner un paquet de bonbons s’ils refont une der-
nière partie (toujours sous les mêmes modalités) et si, à l’issue de ce jeu, Sophie trouve la bonne boîte.
Germain a pour obligation de placer le paquet dans une boîte au hasard, sans avoir le droit de communi-
quer à Sophie la boîte où il a placé le paquet. Avant de commencer cette ultime partie, Sophie et Germain
peuvent discuter d’une stratégie commune.

9) Pour quelles valeurs de n  3, Sophie et Germain peuvent-ils mettre au point une stratégie com-
mune qui assurera à Sophie de trouver la boîte avec le paquet ?
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Problème 3 : intersections et réunions

Ci-dessous, on note N∗ l’ensemble des entiers naturels non nuls.

Pour tout réel x, on note ent(x) la partie entière inférieure de x ; il s’agit de l’unique entier relatif n tel
que n  x < n +1. Par exemple, ent(2) = 2, ent(9,99) = 9, ent(π) = 3, ent(−2) =−2, et ent(−e) =−3.

On note aussi frac(x) la partie fractionnaire de x ; il s’agit du réel x − ent(x), qui appartient à
l’intervalle [0;1[. Ainsi, frac(−2) = frac(2) = 0, frac(9,99) = 0,99, frac(π) =π−3, et frac(−e) = 3−e.

Pour tous les réels x et y , on note également max{x ; y} le plus grand des nombres x et y , c’est-à-dire leur
maximum, et min{x ; y} le plus petit des nombres x et y , c’est-à-dire leur minimum. On rappelle qu’un

nombre réel est rationnel lorsqu’il est égal à une fraction de la forme
p

q
où p est un entier relatif, q un

entier naturel non nul ; lorsque PGCD(p, q) = 1, on dit que
p

q
est une fraction irréductible. Un réel est

irrationnel lorsqu’il n’est pas rationnel.

Enfin, pour tout réel x > 0, on note E (x) l’ensemble

{
ent

(
n

x

)
: n ∈N∗

}
=

{
ent

(
1

x

)
;ent

(
2

x

)
;ent

(
3

x

)
;ent

(
4

x

)
; . . .

}
;

il s’agit de l’ensemble des entiers k  0 pour lesquels il existe un entier n  1 tel que k  n

x
< k +1.

Cet exercice vise à identifier les réels α> 0 et β> 0 satisfaisant l’une ou l’autre des propriétés suivantes :

Propriété P∩ : l’intersection des deux ensembles E (α) et E (β) est vide ;

Propriété P∪ : la réunion des deux ensembles E (α) et E (β) est égale à N∗.

Partie 1 : Quelques cas particuliers

1) Soit x un réel quelconque.

a) Démontrer que x −1 < ent(x)  x.

b) Soit n un entier relatif et y un réel tel que 0  y < 1. On suppose que x = n+ y . Exprimer n et y
en fonction de ent(x) et frac(x).

2) Soit x un réel strictement positif. Calculer E (x)

a) lorsque x = 1 ;

b) lorsque x > 1.

3) Lesquelles des propriétés P∩ et P∪ sont satisfaites

a) lorsque max{α ;β} = 1 ?

b) lorsque max{α ;β} > 1 ?

4) Soit x un réel quelconque et n un entier naturel non nul.

a) Démontrer, pour tout entier k  0, que ent(nfrac(kx)) appartient à l’ensemble {0;1; . . . ;n −1}.

b) Démontrer qu’il existe deux entiers k et ℓ tels que 0  k < ℓ n et

ent(nfrac(kx)) = ent(nfrac(ℓx)).

c) On pose m = ℓ−k. Démontrer que le nombre frac(mx) appartient à l’un des deux intervalles

[
0;

1

n

[
ou

]
1− 1

n
;1

[
.
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d) On suppose dans cette question que 1− 1

n
< frac(mx) < 1, et on pose u = ent

(
1

1− frac(mx)

)
.

Démontrer que ent(umx) = uent(mx)+u −1 et que 0  frac(umx) < 1

n
.

e) Démontrer que, dans tous les cas, il existe un entier v  1 pour lequel 0  frac(v x) < 1

n
.

5) On suppose dans cette question que max{α ;β} < 1 et que α est égal à un rationnel
p

q
, où p et q sont

des entiers naturels non nuls.

a) Déduire de la question 4) que, pour tout réel ε > 0, il existe deux entiers naturels non nuls k

et ℓ tels que qk  ℓ

β
< qk +ε.

b) Lesquelles des propriétés P∩ et P∪ sont satisfaites ?

Partie 2 : Partition

L’objectif de cette partie est de démontrer le résultat suivant, que l’on appellera théorème A :

Les propriétés P∩ et P∪ sont simultanément satisfaites si et seulement si α et β sont deux
nombres irrationnels tels que α+β= 1.

6) On suppose dans cette question que α et β sont deux nombres irrationnels tels que max{α ;β} < 1.

a) Démontrer, pour tout entier n  1, que l’ensemble E (α) compte ent(nα) éléments compris
entre 1 et n −1.

b) Démontrer que, si α+β> 1, la propriété P∩ n’est pas satisfaite.

c) Démontrer que, si α+β< 1, la propriété P∪ n’est pas satisfaite.

7) On suppose dans cette question que α et β sont deux nombres irrationnels tels que α+β= 1.

a) Démontrer, pour tout entier n  1, que ent(nα)+ent(nβ) = n −1.

b) Démontrer, pour tout entier n  1, que l’on est dans l’une des deux situations suivantes :

1° ent((n +1)α) = ent(nα)+1, ent((n +1)β) = ent(nβ), n ∈ E (α) et n ∉ E (β) ;

2° ent((n +1)α) = ent(nα), ent((n +1)β) = ent(nβ)+1, n ∉ E (α) et n ∈ E (β).

8) Démontrer le théorème A.

Partie 3 : Intersection vide

L’objectif de cette partie est de démontrer le résultat suivant, que l’on appellera théorème B :

La propriété P∩ est satisfaite si et seulement si α et β sont deux nombres irrationnels pour
lesquels il existe deux entiers u  1 et v  1 tels que uα+ vβ= 1.

9) Démontrer que, si α et β sont irrationnels et s’il existe deux entiers u  1 et v  1 tels que uα+vβ= 1,
la propriété P∩ est bien satisfaite.

On suppose désormais, pour les questions 10) à 18), que α et β sont deux réels strictement positifs pour
lesquels la propriété P∩ est satisfaite.

10) Démontrer que α et β sont irrationnels et que max{α ;β} < 1.

On adopte maintenant un point de vue géométrique sur le problème. On identifie chaque point du plan
à ses coordonnées, et chaque rectangle à un produit cartésien d’intervalles ; ainsi, lorsque I et J sont deux
intervalles, on pourra noter I × J l’ensemble des points de coordonnées (x, y) pour lesquels x ∈ I et y ∈ J .

On note O l’origine du repère, et Ω l’ensemble des points du plan dont les coordonnées sont de la
forme (kα+m,kβ+n), où k, m et n sont des entiers relatifs.

6



d) On suppose dans cette question que 1− 1

n
< frac(mx) < 1, et on pose u = ent

(
1

1− frac(mx)

)
.

Démontrer que ent(umx) = uent(mx)+u −1 et que 0  frac(umx) < 1

n
.

e) Démontrer que, dans tous les cas, il existe un entier v  1 pour lequel 0  frac(v x) < 1

n
.

5) On suppose dans cette question que max{α ;β} < 1 et que α est égal à un rationnel
p

q
, où p et q sont

des entiers naturels non nuls.

a) Déduire de la question 4) que, pour tout réel ε > 0, il existe deux entiers naturels non nuls k

et ℓ tels que qk  ℓ

β
< qk +ε.

b) Lesquelles des propriétés P∩ et P∪ sont satisfaites ?

Partie 2 : Partition

L’objectif de cette partie est de démontrer le résultat suivant, que l’on appellera théorème A :

Les propriétés P∩ et P∪ sont simultanément satisfaites si et seulement si α et β sont deux
nombres irrationnels tels que α+β= 1.

6) On suppose dans cette question que α et β sont deux nombres irrationnels tels que max{α ;β} < 1.

a) Démontrer, pour tout entier n  1, que l’ensemble E (α) compte ent(nα) éléments compris
entre 1 et n −1.

b) Démontrer que, si α+β> 1, la propriété P∩ n’est pas satisfaite.

c) Démontrer que, si α+β< 1, la propriété P∪ n’est pas satisfaite.

7) On suppose dans cette question que α et β sont deux nombres irrationnels tels que α+β= 1.

a) Démontrer, pour tout entier n  1, que ent(nα)+ent(nβ) = n −1.

b) Démontrer, pour tout entier n  1, que l’on est dans l’une des deux situations suivantes :

1° ent((n +1)α) = ent(nα)+1, ent((n +1)β) = ent(nβ), n ∈ E (α) et n ∉ E (β) ;

2° ent((n +1)α) = ent(nα), ent((n +1)β) = ent(nβ)+1, n ∉ E (α) et n ∈ E (β).

8) Démontrer le théorème A.

Partie 3 : Intersection vide

L’objectif de cette partie est de démontrer le résultat suivant, que l’on appellera théorème B :

La propriété P∩ est satisfaite si et seulement si α et β sont deux nombres irrationnels pour
lesquels il existe deux entiers u  1 et v  1 tels que uα+ vβ= 1.

9) Démontrer que, si α et β sont irrationnels et s’il existe deux entiers u  1 et v  1 tels que uα+vβ= 1,
la propriété P∩ est bien satisfaite.

On suppose désormais, pour les questions 10) à 18), que α et β sont deux réels strictement positifs pour
lesquels la propriété P∩ est satisfaite.

10) Démontrer que α et β sont irrationnels et que max{α ;β} < 1.

On adopte maintenant un point de vue géométrique sur le problème. On identifie chaque point du plan
à ses coordonnées, et chaque rectangle à un produit cartésien d’intervalles ; ainsi, lorsque I et J sont deux
intervalles, on pourra noter I × J l’ensemble des points de coordonnées (x, y) pour lesquels x ∈ I et y ∈ J .

On note O l’origine du repère, et Ω l’ensemble des points du plan dont les coordonnées sont de la
forme (kα+m,kβ+n), où k, m et n sont des entiers relatifs.
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11) a) Soit A et B deux points de Ω. Démontrer que la translation de vecteur
−→
AB transforme tout

point de Ω en un point de Ω.

b) Soit ℓ un entier relatif. Démontrer que la symétrie centrale de centre O et l’homothétie de
centre O et de rapport ℓ, c’est-à-dire la transformation qui envoie tout point X sur le point Y
tel que

−−→
OY = ℓ

−−→
OX , transforment chaque point de Ω en un point de Ω.

12) Démontrer que, pour chaque point P dans Ω de coordonnées (x, y), il existe un unique triplet
d’entiers relatifs (k,m,n) pour lesquels x = kα+m et y = kβ+n ; on notera désormais f (P ) l’entier k
ainsi défini.

13) a) Démontrer que l’ensemble E (α) est formé des entiers k  0 pour lesquels 0 < frac((k+1)α) <α.

b) En déduire que le rectangle ]0;α[×]0 ;β[ ne contient aucun point X de Ω tel que f (X )  1.

c) Soit ε un réel strictement positif. Démontrer que le rectangle ] − ε ;ε[×] − ε ;ε[ contient un
point Y de Ω tel que f (Y )  1.

d) En déduire que le rectangle ]0;α[×]0 ;β[ ne contient aucun point de Ω.

14) a) Soit ε un réel tel que 0 < ε  min{α ;β}. Démontrer que le rectangle ]0;ε[×]−ε ;0[ contient un
point de Ω.

On note Q un point ainsi obtenu lorsque ε= min{α ;β}

2
, et (s, t ) ses coordonnées. Pour tout point P

de coordonnées (x, y), on note désormais g (P ) la quantité
x

s
− y

t
.

b) Démontrer que, pour tout entier relatif k, le rectangle ]ks ; (k + 2)s]×]kt ; (k − 2)t ] ne contient
aucun de point de Ω.

c) Démontrer que Ω ne contient aucun point P tel que 1 < g (P )  2.

d) Démontrer que tout point P de Ω tel que |g (P )|  2 appartient à la droite (OQ).

e) Démontrer que, pour tout réel ε> 0, il existe un point qui appartient à la fois à la droite (OQ),
au rectangle ]0;ε[×]−ε ;0[ et à l’ensemble Ω.

f ) Démontrer que toute droite parallèle à (OQ) et passant par un point du rectangle ]0;α[×]0 ;β[
ne contient aucun point de Ω.

15) Soit x un réel strictement positif, et X un ensemble de réels contenant x mais aucun élément
de l’intervalle ]0 ; x[. On suppose, pour tous réels y et z dans X , que y − z ∈ X . Démontrer
que X = {kx : k ∈ Z}, c’est-à-dire que X est l’ensemble des réels de la forme kx où k est un entier
relatif.

16) On note Λ l’ensemble des réels x pour lesquels le point de coordonnées (x,0) appartient à une droite

parallèle à (OQ) et passant par un point de Ω. On pose également λ=α− s

t
β.

a) Démontrer que Λ contient λ mais aucun élément de l’intervalle ]0;λ[.

b) En déduire que Λ= {kλ : k ∈Z}.

17) On note Γ l’ensemble des entiers f (P ) obtenus lorsque P est un point de Ω situé sur la droite (OQ).

a) Démontrer que l’ensemble Γ contient au moins un entier naturel non nul.

b) Soit γ le plus petit entier naturel non nul tel que γ ∈ Γ. Démontrer que Γ= {kγ : k ∈Z}.

c) En déduire que la fraction − s

t
est un nombre rationnel.

18) Enfin, on note
u

v
le nombre − s

t
sous forme d’une fraction irréductible, puis on note W l’ensemble

des entiers relatifs ℓ tels que
ℓ

v
∈Λ.

a) Démontrer que u et v appartiennent à W .

b) En déduire que W =Z.

19) Démontrer le théorème B.
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Partie 4 : Réunion et intersections multiples

20) Démontrer que la propriété P∪ est satisfaite si et seulement si max{α ;β} = 1, ou α et β sont deux
irrationnels strictement plus petits que 1 pour lesquels il existe deux entiers u  1 et v  1 tels
que u(1−α)+ v(1−β) = 1.

21) Existe-t-il trois réels strictement positifs α, β et γ pour lesquels les ensembles E (α), E (β) et E (γ)
sont deux à deux disjoints ?
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