BREVET DE TECHNICIEN SUPÉRIEUR Assistance Technique d'Ingénieur

ÉPREUVE E3 – Mathématiques et sciences physiques Sous-épreuve – U32 – Sciences physiques

SESSION 2024

Durée : 2 heures

Coefficient: 2

Matériel autorisé :

L'usage de la calculatrice avec mode examen actif est autorisé.

L'usage de la calculatrice sans mémoire, « type collège » est autorisé.

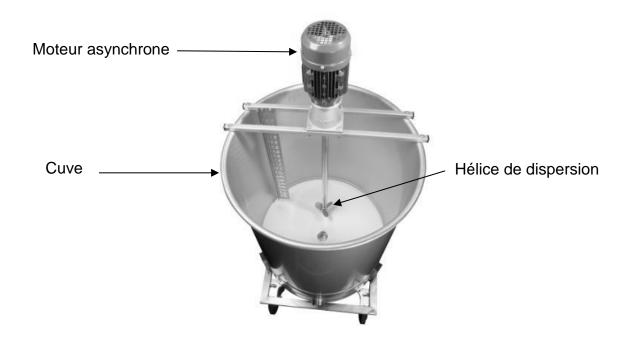
Tout autre matériel est interdit.

Documents à rendre avec la copie :

- Document réponse n°1 page 11/12
- Document réponse n°2 page 12/12

Dès que le sujet vous est remis, assurez-vous qu'il soit complet et comporte 12 pages numérotées de 1/12 à 12/12.

S'il apparaît au candidat qu'une donnée est manquante ou erronée, il pourra formuler toutes les hypothèses qu'il jugera nécessaires pour résoudre les questions posées. Il justifiera, alors, clairement et précisément ces hypothèses.


BTS ATI unité U32 : Sciences physiques	Durée : 2h	Session 2024
CODE SUJET : 24ATPHY	Coefficient : 2	Page 1 sur 12

Mélangeur industriel de peinture

Dans une entreprise de fabrication de peinture les différents constituants des peintures (pigments, liants, solvants, adjuvants) sont mélangés à l'aide de mélangeurs industriels.

Ce type de mélangeur comporte une cuve où l'assemblage des constituants est effectué par l'intermédiaire d'une hélice de dispersion entraînée en rotation par un moteur asynchrone triphasé. La vitesse de rotation de l'hélice doit pouvoir être réglée en fonction des préparations à réaliser.

Une régulation de la température de la cuve peut être nécessaire pour assurer un mélange optimal des constituants dans certaines préparations.

Source:

https://www.schippers.fr/cuve-avec-melangeur-en-haut-inox-200-l-1508560.html

Le sujet comprend trois parties. Les différentes parties sont indépendantes.

Partie A : Choix du moteur et commande de sa vitesse (8 points)

Partie B : Mesure et affichage de la température de la cuve (8 points)

Partie C : Régulation tout ou rien de la température de la cuve (4 points)

BTS ATI unité U32 : Sciences physiques	Durée : 2h	Session 2024
CODE SUJET : 24ATPHY	Coefficient : 2	Page 2 sur 12

PARTIE A - CHOIX DU MOTEUR ET COMMANDE DE SA VITESSE (8 points)

A1. Choix du moteur et étude de ses caractéristiques nominales

Le moteur asynchrone triphasé doit pouvoir entraîner l'hélice de dispersion en respectant le cahier des charges ci-dessous imposé par le bureau d'études de l'entreprise de fabrication de peinture.

- Mélangeur à hélice marine à 3 pales

- Diamètre de l'hélice: d = 0,15 m

Vitesse de rotation : 0 à 1400 tr·min⁻¹

- Masse volumique de la peinture : $\rho = 1300 \text{ kg} \cdot \text{m}^{-3}$

- Rendement minimal de 60 %

La puissance mécanique (en W) fournie par une hélice est donnée par la relation suivante :

$$P_{IJ} = N_p \times \rho \times n^3 \times d^5$$

avec : ρ : masse volumique du fluide mélangé (kg·m⁻³) ;

n: vitesse de rotation de l'hélice (tr·s⁻¹);

d: diamètre de l'hélice (m);

 N_p : nombre de puissance (nombre sans dimension qui dépend du type d'hélice utilisé et du régime d'écoulement).

Type de mobile	Turbine de Ruston	Turbine à pales inclinées	Hélice à 3 pales minces	Hélice marine à 3 pales	Hélice double flux à 2 pales
	路路				· (1)
Nombre de puissance NP (régime turbulent)	5,20	4,30	0,40	0,43	0,32

Nombre de puissance pour différents mobiles d'agitation

Q1 - Extraire du tableau ci-dessus le nombre de puissance N_p du mobile prévu par le cahier des charges.

BTS ATI unité U32 : Sciences physiques	Durée : 2h	Session 2024
CODE SUJET : 24ATPHY	Coefficient : 2	Page 3 sur 12

- **Q2 -** Convertir la valeur de la vitesse de rotation maximale de l'hélice n_{max} en tr·s⁻¹.
- **Q3 -** Montrer que la puissance mécanique maximale $P_{U max}$ fournie par l'hélice est de l'ordre de 5,4 x 10² W.
- **Q4 -** En vous appuyant sur le cahier des charges et les données de la plaque signalétique ci-dessous, justifier le choix du moteur LS 71 L*.

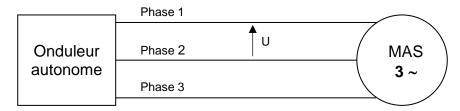
0,55 kW cos
$$φ = 0,70$$
 1400 tr·min⁻¹

$$Δ 230 V 2,80 A$$

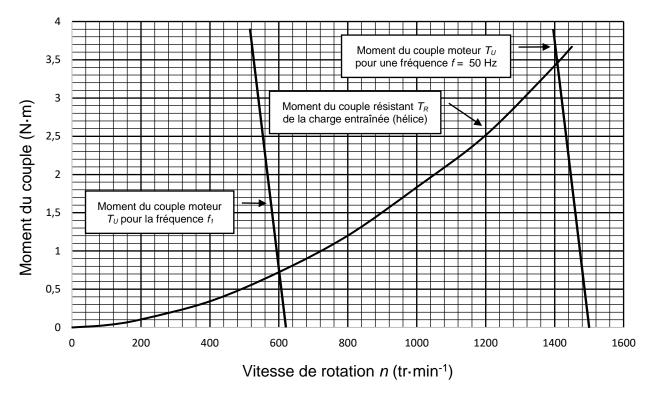
$$Y 400 V 1,62 A$$
50 Hz

Plaque signalétique du moteur LS 71 L*.

On s'intéresse au fonctionnement nominal du moteur lorsqu'il est alimenté par le réseau triphasé 230 V/400 V – 50 Hz


- **Q5 -** Choisir le couplage adapté (étoile ou triangle) du moteur sur le réseau en justifiant votre réponse.
- Q6 Compléter le schéma du couplage choisi sur le **DOCUMENT REPONSE N°1** page 11 et relier les enroulements du stator au réseau.
- **Q7 -** Relever sur la plaque signalétique la valeur du courant nominal en ligne I_N pour le couplage choisi.
- **Q8** Calculer la valeur de la puissance active nominale P_{AN} absorbée par le moteur asynchrone triphasé LS 71 L*.
- **Q9 -** Montrer que le rendement nominal η_N du moteur choisi, respecte bien le cahier des charges proposé.

BTS ATI unité U32 : Sciences physiques	Durée : 2h	Session 2024
CODE SUJET : 24ATPHY	Coefficient : 2	Page 4 sur 12


A2. Analyse de la commande de la vitesse du moteur LS 71 L*

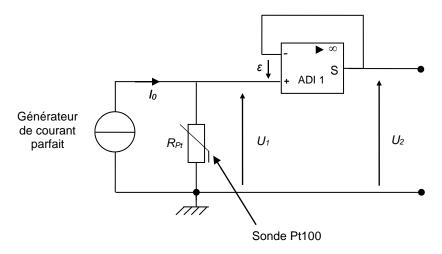
Le mélange de la peinture doit s'effectuer à vitesse réglable en fonction des étapes de la préparation. Le moteur est donc alimenté par un onduleur autonome qui fournit un système de tensions triphasées de fréquence f réglable et de valeur efficace U telle U

que :
$$\frac{U}{f}$$
 = constante.

Les caractéristiques mécaniques du moteur et de la charge entrainée (hélice) sont représentées sur le graphique ci-dessous :

On souhaite régler la vitesse du mélangeur à $n_1 = 600 \text{ tr} \cdot \text{min}^{-1}$.

- **Q10** Déterminer graphiquement la valeur de la vitesse de synchronisme n_{S1} du moteur dans ces conditions.
- **Q11 -** Sachant que le nombre de paires de pôles du moteur est : p = 2, en déduire la valeur de la fréquence de fonctionnement f_1 de l'onduleur permettant d'obtenir la vitesse de rotation $n_1 = 600$ tr·min⁻¹.


BTS ATI unité U32 : Sciences physiques	Durée : 2h	Session 2024
CODE SUJET : 24ATPHY	Coefficient : 2	Page 5 sur 12

PARTIE B - MESURE ET AFFICHAGE DE LA TEMPÉRATURE DE LA CUVE (8 points)

Les amplificateurs opérationnels sont supposés parfaits et sont alimentés par des tensions symétriques : -Vcc = -12 V et + Vcc = +12 V.

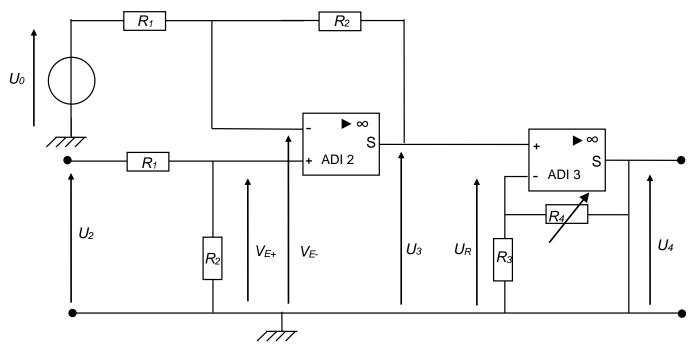
B1. Mesure de la température

Pour mesurer la température de la cuve, on choisit d'insérer une sonde à résistance de platine Pt100 dans la structure ci-dessous.

Le générateur de courant parfait délivre un courant I_0 = 10 mA.

Q12 - Donner la valeur du courant dans la résistance R_{Pt} en considérant que l'ADI1 est supposé parfait.

Dans le domaine de température considéré, la résistance de la sonde Pt100 est donnée par la relation :


$$R_{Pt} = 100 \times (1 + 3.09 \times 10^{-3} \times \theta)$$
 où θ désigne la température exprimée °C.

Q13 - Exprimer la tension U_1 en fonction de R_{Pt} et I_0 puis en déduire une expression de U_1 uniquement en fonction de la température θ .

Q14 - Justifier que pour l'ADI1, $U_2 = U_1$. Indiquer le nom donné à ce montage.

BTS ATI unité U32 : Sciences physiques	Durée : 2h	Session 2024
CODE SUJET : 24ATPHY	Coefficient : 2	Page 6 sur 12

La tension U_2 est appliquée à l'entrée du montage suivant :

On donne $R_1 = R_2 = 10 \text{ k}\Omega$; $R_3 = 1 \text{ k}\Omega$; R_4 est une résistance réglable ; $U_0 = 1 \text{ V}$. Les ADI 2 et ADI 3 fonctionnent en régime linéaire.

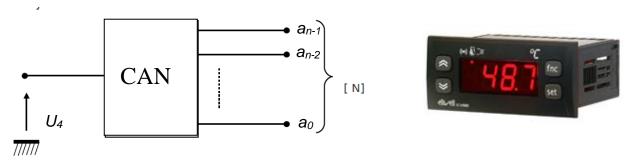
Q15 - Exprimer la tension V_{E+} en fonction de U_2 , R_1 et R_2 et en déduire que $V_{E+} = \frac{U_2}{2}$.

On montre que l'expression de la tension V_{E-} en fonction de U_0 et U_3 est la suivante :

$$V_{E_{-}} = \frac{U_0 + U_3}{2}$$

Q16 - Rappeler la relation entre V_{E+} et V_{E-} . En déduire que $U_3 = U_2 - U_0$.

Q17 - Sachant que $U_2 = U_1$, montrer que : $U_3 = 3.09 \times 10^{-3} \times \theta$.


On montre que $U_4 = (1 + \frac{R_4}{R_3}) \times U_3$

Q18 - Calculer la valeur qu'il faut donner à la résistance R_4 pour obtenir $U_4 = 0,1 \times \theta$.

BTS ATI unité U32 : Sciences physiques	Durée : 2h	Session 2024
CODE SUJET : 24ATPHY	Coefficient : 2	Page 7 sur 12

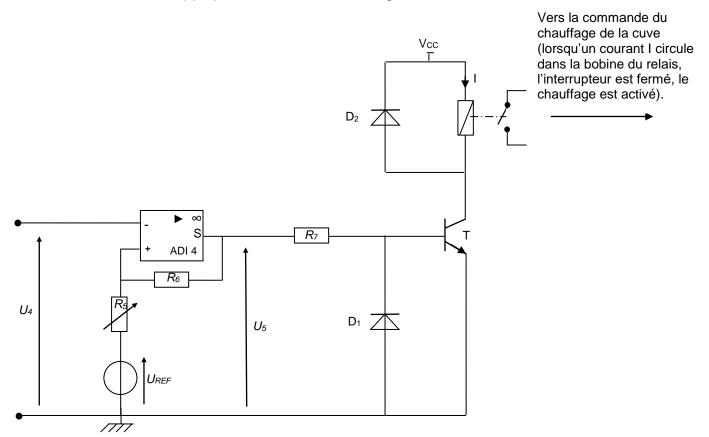
B2. Étude de l'affichage de la température

La tension U_4 proportionnelle à la température est appliquée à l'entrée d'un convertisseur analogique numérique avec n = 10 bits relié à un afficheur numérique.

La tension d'entrée du convertisseur choisi est comprise entre 0 V et la tension pleine échelle $U_{PE} = 10 \text{ V}$.

- **Q19 -** Déterminer le nombre maximum N_{MAX} exprimé en base 10 que l'on peut obtenir en sortie du convertisseur analogique numérique.
- **Q20** Montrer que la valeur du quantum q de ce convertisseur est de $9.8 \times 10^{-3} \text{ V}$.

On souhaite afficher la température avec une précision maximale de 0,1 °C.


- **Q21 -** Sachant que $U_4 = 0.1 \times \theta$ avec θ en degrés Celsius et U_4 en Volt, déterminer la valeur de la variation $\Delta\theta$ de la température pour une variation de tension telle que $\Delta U_4 = q$.
- **Q22 -** Commenter la variation déterminée à la question précédente par rapport à la précision souhaitée.

BTS ATI unité U32 : Sciences physiques	Durée : 2h	Session 2024
CODE SUJET : 24ATPHY	Coefficient : 2	Page 8 sur 12

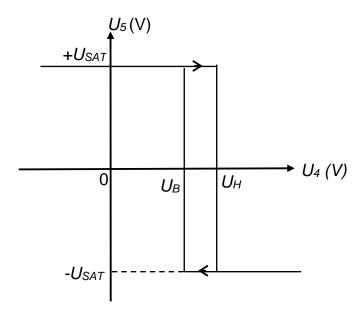
PARTIE C - RÉGULATION TOUT OU RIEN DE LA TEMPÉRATURE DE LA CUVE (4 points)

On souhaite réaliser une régulation tout ou rien (TOR) de la température de la cuve. On suppose que le cahier des charges pour la préparation d'une peinture impose de maintenir la température de la cuve entre 60 °C et 65 °C pendant la phase de malaxage.

La tension *U*₄ est appliquée à l'entrée du montage suivant :

On rappelle que:

- La tension $U_4 = 0.1 \times \theta$, où θ désigne la température de la cuve. La température θ est exprimée en degré Celsius et la tension électrique U_4 en Volt.
- L'amplificateur différentiel intégré est supposé parfait et est alimenté par des tensions symétriques : $-V_{CC} = -12 \text{ V}$ et $+V_{CC} = 12 \text{ V}$.


Q23 – Préciser le rôle de la diode D₂.

Q24 – Indiquer la famille et le type de transistor utilisé dans le montage.

BTS ATI unité U32 : Sciences physiques	Durée : 2h	Session 2024
CODE SUJET : 24ATPHY	Coefficient : 2	Page 9 sur 12

Q25 - Donner le régime de fonctionnement de l'ADI 4 en justifiant la réponse.

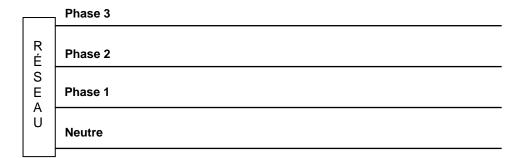
La caractéristique de transfert U_5 en fonction de U_4 est donnée sur le document suivant :

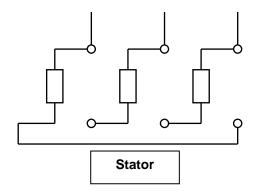
Q26 – Déterminer la valeur des tensions de seuil U_B et U_H qu'il faut choisir pour que la température θ de la cuve soit maintenue entre 60 °C et 65 °C conformément au cahier des charges.

Q27 - Compléter le DOCUMENT REPONSE N°2 page 12 en indiquant :

- la valeur de la tension U_5 (+ U_{SAT} ou - U_{SAT})
- l'état du transistor T (bloqué ou saturé)
- l'état du chauffage (allumé ou éteint)

Q28 – Pour l'étape 2 du **DOCUMENT RÉPONSE N°2 page 12**, détailler le raisonnement permettant d'obtenir la valeur de la tension U_5 , l'état du transistor et l'état du chauffage.


BTS ATI unité U32 : Sciences physiques	Durée : 2h	Session 2024
CODE SUJET : 24ATPHY	Coefficient : 2	Page 10 sur 12

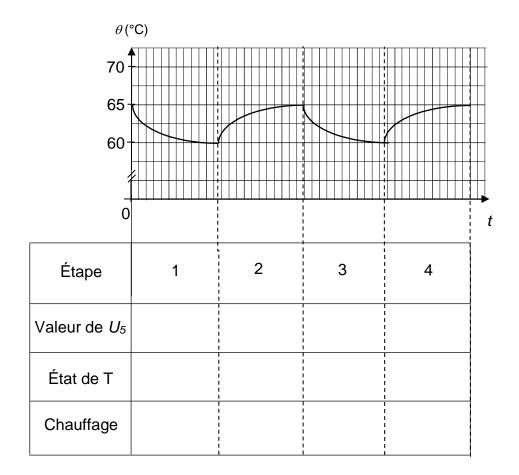

DOCUMENT RÉPONSE N°1

À rendre avec votre copie

Couplage du moteur asynchrone sur le réseau électrique

Q6 -

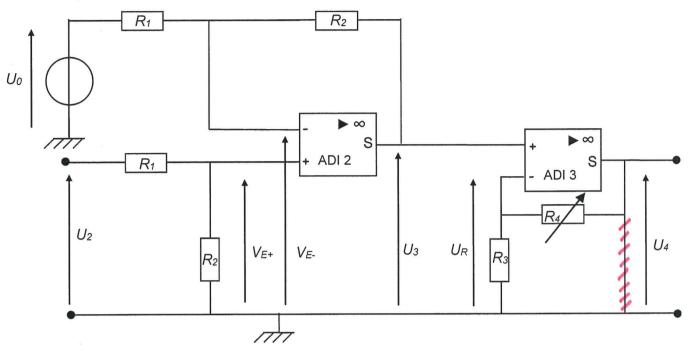
BTS ATI unité U32 : Sciences physiques	Durée : 2h	Session 2024
CODE SUJET : 24ATPHY	Coefficient : 2	Page 11 sur 12


Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM:																					
N° candidat :	(Les nu	ıméros	figure	ant sur	la con	vocatio	n si h	esoin	deman	der à i	in sun	eillant		N° (d'ins	crip	tio	n :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	Les III	imeros	/ Igure	ent sur	la con	Vocation /) ii, si u	esoiii	deman	der a c	in surv	emant	.,								1.2

DOCUMENT RÉPONSE N°2

À rendre avec votre copie

Régulation tout ou rien de la température


Q27 et Q28 -

BTS ATI unité U32 : Sciences physiques	Durée : 2h	Session 2024				
CODE SUJET : 24ATPHY	Coefficient : 2	Page 12 sur 12				

Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM:																					
N° candidat :	(Les nu	ıméros	figure	ant sur	la con	vocatio	n si h	esoin	deman	der à i	in sun	eillant		N° (d'ins	crip	tio	n :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	Les III	imeros	/ Igure	ent sur	la con	Vocation /) ii, si u	esoiii	deman	der a c	in surv	emant	.,								1.2

La tension U₂ est appliquée à l'entrée du montage suivant :

On donne R_1 = R_2 = 10 k Ω ; R_3 = 1 k Ω ; R_4 est une résistance réglable ; U_0 = 1 V. Les ADI 2 et ADI 3 fonctionnent en régime linéaire.

Q15 - Exprimer la tension V_{E+} en fonction de U_2 , R_1 et R_2 et en déduire que $V_{E+} = \frac{U_2}{2}$.

On montre que l'expression de la tension V_{E_-} en fonction de U_0 et U_3 est la suivante :

$$V_{E-} = \frac{U_0 + U_3}{2}$$

Q16 - Rappeler la relation entre V_{E+} et V_{E-} . En déduire que $U_3 = U_2 - U_0$.

Q17 - Sachant que $U_2 = U_{1}$, montrer que : $U_3 = 3{,}09 \times 10^{-3} \times \theta$.

On montre que $U_4 = (1 + \frac{R_4}{R_3}) \times U_3$

Q18 - Calculer la valeur qu'il faut donner à la résistance R_4 pour obtenir U_4 = 0,1 × θ .

BTS ATI unité U32 : Sciences physiques	Durée : 2h	Session 2024
CODE SUJET : 24ATPHY	Coefficient: 2	Page 7 sur 12