BACCALAURÉAT GÉNÉRAL

SESSION 2006

SUJET SORTI

PHYSIQUE-CHIMIE

Série S

DURÉE DE L'ÉPREUVE : 3 h 30 - COE CIL : 6

L'usine de cattulatrices <u>EST</u> autorisé suls par est te par de feuille de papier millimétré

Les données sont en italique

Ce sujet comporte un exercice de CHIMIE et deux exercices de PHYSIQUE présentés sur 11 pages numérotées de 1 à 11, annexe comprise.

La feuille d'annexe (page 11) EST À RENDRE AGRAFÉE À LA COPIE.

Le candidat doit traiter les trois exercices qui sont indépendants les uns des autres :

- I. La radioactivité au service de l'archéologie (5,5 points)
- II. Corrosion des gouttières (6,5 points)
- III. Céramique et ultrasons (4 points)

6PYOSME1

Page: 1/11

EXERCICE I. LA RADIOACTIVITÉ AU SERVICE DE L'ARCHÉOLOGIE (5,5 POINTS)

Isotope radioactif du carbone, le « carbone 14 » noté 14C est formé continuellement dans la haute atmosphère. Il est très réactif et donne rapidement du « gaz carbonique » (dioxyde de carbone) qui, en quelques mois, se mélange avec l'ensemble du gaz carbonique de notre atmosphère. Il sera donc assimilé par les plantes au même titre que le gaz carbonique produit avec du carbone stable (les isotopes ¹²C et ¹³C). On le retrouvera donc comme constituant de la matière organique des animaux herbivores et carnivores. [...]

Vers 1950, le chimiste américain W. Libby a démontré [...] que tous les êtres vivants sont caractérisés

par le même rapport du nombre de noyaux de ¹⁴C au nombre de noyaux de ¹²C : $\frac{N(^{14}C)}{N(^{12}C)}$. En

conséquence, un gramme de carbone pur extrait d'un être vivant présente une activité due au 14C. voisine de 13,6 désintégrations par minute, ce qui correspond à « un âge zéro ». Dans un animal ou un végétal mort (tronc d'arbre, coquille fossile, os... trouvé dans une caverne), le ¹⁴C « assimilé » par l'animal ou la plante quand il était vivant, décroît exponentiellement en fonction du temps du fait de sa radioactivité à partir de l'instant de sa mort. La comparaison de cette activité résiduelle aux 13,6 désintégrations par minute fournit directement l'âge de l'échantillon fossile [...]. Au bout de 40 millénaires, il reste moins de 1% du 14C que contenait initialement un échantillon fossile ; cette teneur résiduelle devient trop faible pour être déterminée avec précision.

J.C Duplessy et C. Laj D'après une publication du CEA Clefs CEA n°14 automne 1989

On suppose que la valeur 13,6 désintégrations par minute, pour un organisme vivant, est restée constante au cours des derniers millénaires.

1. Désintégration du « carbone 14 »

On donne les numéros atomiques suivants : Z = 6 pour le carbone (C) et Z = 7 pour l'azote (N).

- 1.1. Pourquoi les noyaux de symboles ${}^{12}_{6}$ C et ${}^{13}_{6}$ C sont-ils appelés isotopes ?
- 1.2. Donner la composition du noyau de symbole ¹⁴_sC.
- 1.3. Le « carbone 14 » se désintègre « en azote 14 ».

Écrire l'équation de désintégration du « carbone 14 » en supposant que le noyau fils n'est pas obtenu dans un état excité. S'agit-il d'une radioactivité α , β^{+} ou β^{-} ?

2. Propriétés des désintégrations radioactives

- 2.1. Donner les caractéristiques des transformations radioactives en complétant les phrases du cadre fourni en ANNEXE PAGE 11 À RENDRE AGRAFÉE AVEC LA COPIE à l'aide des mots ou expressions proposés.
- 2.2. On propose trois expressions mathématiques pour représenter l'évolution du nombre N de noyaux de « carbone 14 » restant dans l'échantillon à la date t, λ étant la constante radioactive relative à la désintégration étudiée ($\lambda > 0$) :

(a)
$$N = N_a$$
. $e^{-\lambda t}$

(b)
$$N = N_a - \lambda$$

(b)
$$N = N_o - \lambda t$$
 (c) $N = N_o \cdot e^{\lambda t}$

- 2.2.1. Dans chacune des trois expressions ci-dessus :
- Que vaut N à t = 0?
- Quelle est la limite de N quand t tend vers l'infini ?

En déduire l'expression à retenir parmi les propositions (a), (b) et (c), en justifiant.

2.2.2. L'activité $A = -\frac{dN}{dt}$ à l'instant de date t est donnée par la relation $A = A_0$. $e^{-\lambda t}$.

Que représente Ao?

- 2.2.3. En s'aidant du texte, donner pour un échantillon de 1,0 g de carbone pur, extrait d'un être vivant, la valeur de A_0 .
- 2.2.4. À quel événement correspond « l'âge zéro » cité dans le texte ?

3. Datation au « carbone 14 »

Le temps de demi-vie de l'isotope $^{14}_{6}$ C est $t_{1/2}$ = 5,73 × 10 3 ans.

- 3.1. Qu'appelle-t-on temps de demi-vie $t_{1/2}$ d'un échantillon radioactif ?
- 3.2. Montrer que $\lambda . t_{1/2} = ln2$ à partir des réponses données aux questions 2.2.1. et 3.1.
- 3.3. Calculer la valeur de λ dans le cas du « carbone 14 », en gardant $t_{1/2}$ en années.
- 3.4. Plusieurs articles scientifiques parus en 2004 relatent les informations apportées par la découverte d'Ötzi, un homme naturellement momifié par la glace et découvert, par des randonneurs, en septembre 1991 dans les Alpes italiennes.

Pour dater le corps momifié, on a mesuré l'activité d'un échantillon de la momie. On a trouvé une activité égale à 7,16 désintégrations par minute pour une masse équivalente à 1,0 g de carbone pur. Donner l'expression littérale de la durée écoulée entre la mort d'Ötzi et la mesure de l'activité de l'échantillon.

Calculer cette durée.

3.5. À Obock (en République de Djibouti), des chercheurs ont étudié un corail vieux de 1.2×10^5 ans (soit cent vingt mille ans).

D'après le texte, ce corail a-t-il pu être daté par la méthode utilisant le « carbone 14 » ? Justifier la réponse.

4. Choix du radioélément

4.1. Pour dater des roches très anciennes, on utilise parfois la méthode potassium-argon. Le « potassium 40 », de demi-vie 1.3×10^9 ans, se transforme en « argon 40 ».

Quel pourcentage de noyaux de « potassium 40 » reste-t-il dans une roche au bout de 4 fois le temps de demi-vie ?

4.2. Comme il est indiqué dans le texte pour le « carbone 14 », on suppose que la teneur résiduelle minimale permettant d'effectuer une datation avec le « potassium 40 » est également de 1 % de la teneur initiale.

En comparant l'âge de la Terre, qui est de 4.5×10^{9} ans, à la demi-vie du « potassium 40 », préciser si la méthode de datation par le « potassium 40 » permet de mesurer l'âge de la Terre. Justifier la réponse.

6PYOSME1 Page: 3/11

EXERCICE II. CORROSION DES GOUTTIÈRES (6,5 points)

Les précipitations sont naturellement acides en raison du dioxyde de carbone présent dans l'atmosphère. Par ailleurs, la combustion des matières fossiles (charbon, pétrole et gaz) produit du dioxyde de soufre et des oxydes d'azote qui s'associent à l'humidité de l'air pour libérer de l'acide sulfurique et de l'acide nitrique. Ces acides sont ensuite transportés loin de leur source avant d'être précipités par les pluies, le brouillard, la neige ou sous forme de dépôts secs.

Très souvent, les pluies s'écoulant des toits sont recueillies par des gouttières métalliques, constituées de zinc.

Données :

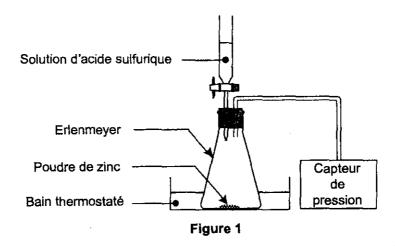
Masse molaire atomique du zinc : $M(Zn) = 65,4 \text{ g.mol}^{-1}$

Loi des gaz parfaits : PV = nRT

Couples acide / base :

H₃O⁺ /H₂O (ℓ)

 $H_2O(\ell) / HO^-(aq)$


 CO_2 , $H_2O(l)/HCO_3$ (aq)

Le zinc est un métal qui réagit en milieu acide selon la réaction d'équation :

$$Zn(s) + 2H_3O^+ = Zn^{2+}(aq) + H_2(g) + 2H_2O(l)$$

1. Suivi cinétique de la transformation

Pour étudier cette transformation, considérée comme totale, on réalise l'expérience dont le schéma simplifié est représenté sur la figure 1.

À l'instant de date t = 0 s, on verse rapidement, sur 0,50 g de poudre de zinc, 75,0 mL de solution d'acide sulfurique de concentration en ions oxonium H_3O^+ égale à 0,40 mol. L^{-1} .

La pression mesurée à cet instant par le capteur est P_i = 1020 hPa.

La formation de dihydrogène crée une surpression qui s'additionne à la pression de l'air initialement présent.

Les valeurs de la pression, mesurée à différentes dates par le capteur de pression, sont reportées dans le tableau page suivante :

6PYOSME1 Page: 4/11

t (min)	0	1,0	3,0	5,0	7,0	9,0	11,0	15,0	20,0	25,0	30,0	35,0
P (hPa)	1020	1030	1060	1082	1101	1120	1138	1172	1215	1259	1296	1335
t (min)	45,0	50,0	60,0	70,0	80,0	90,0	110,0	140,0	160,0	190,0	240,0	300,0
P (hPa)	1413	1452	1513	1565	1608	1641	1697	1744	1749	1757	1757	1757

- 1.1. Compléter le tableau d'évolution du système en ANNEXE PAGE 11 À RENDRE AGRAFÉE AVEC LA COPIE.
- 1.2. En déduire la valeur de l'avancement maximal x_{max} . Quel est le réactif limitant ?
- 1.3. On considère que le dihydrogène libéré par la réaction est un gaz parfait. À chaque instant la surpression $(P-P_i)$ est proportionnelle à la quantité $n(H_2)$ de dihydrogène formé et inversement proportionnelle au volume V_{gaz} de gaz contenu dans l'erlenmeyer: $(P-P_i)V_{gaz}=n(H_2)RT$, où P_i représente la pression mesurée à la date t=0 s , P la pression mesurée par le capteur et T la température du milieu (maintenue constante pendant l'expérience).
 - 1.3.1. Quelle est la relation donnant l'avancement x de la réaction en fonction de $(P-P_I)$, V_{gaz} , R et T?
 - 1.3.2. On note P_{max} la pression mesurée à l'état final.

Écrire la relation donnant l'avancement x_{max} en fonction de P_{max} , P_i , V_{gaz} , R et T.

En déduire la relation donnant l'avancement
$$x : x = x_{\text{max}} \left(\frac{P - P_i}{P_{\text{max}} - P_i} \right)$$

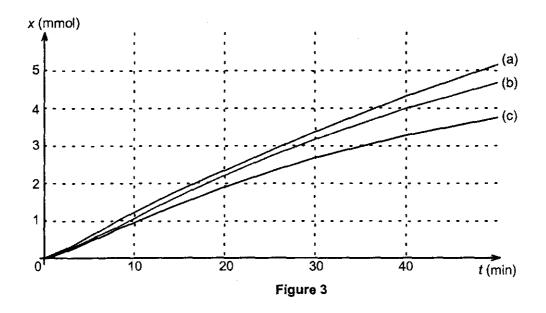
La courbe donnant l'évolution de l'avancement x en fonction du temps est représentée sur la figure 2 en ANNEXE PAGE 11 À RENDRE AGRAFÉE AVEC LA COPIE.

- 1.3.3. Vérifier à l'aide de la courbe la valeur de x_{max} trouvée au 1.2.
- 1.3.4 À l'aide du tableau des résultats, déterminer la valeur de l'avancement à la date t = 50,0 min. Vérifier cette valeur sur la courbe.
- 1.4. Comment peut-on déduire de la figure 2 l'évolution de la vitesse volumique de réaction au cours de la transformation chimique étudiée ?

 Décrire qualitativement cette évolution.

On rappelle l'expression de la vitesse volumique de la réaction : $v = \frac{1}{V} \frac{dx}{dt}$; V est le volume de la solution, supposé constant durant l'expérience.

2. Facteurs cinétiques


2.1. Influence de la concentration en ions oxonium

On reprend le montage précédent (figure 1) et on réalise les trois expériences suivantes :

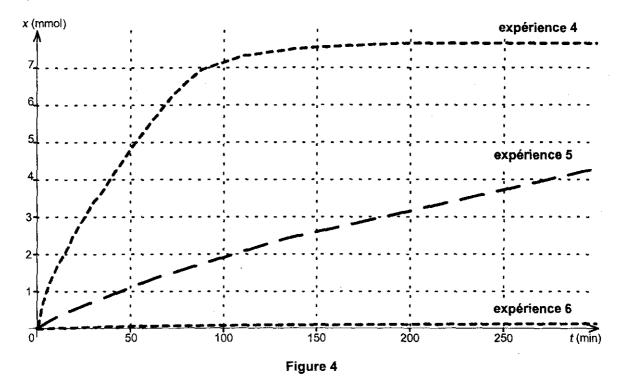
	Expérience 1	Expérience 2	Expérience 3
Température	25 °C	25 °C	25 °C
Masse initiale de zinc	0,50 g	0,50 g	0,50 g
Forme du zinc	poudre	poudre	poudre
Volume de la solution d'acide sulfurique versée	75 mL	75 mL	75 mL
Concentration initiale en ions oxonium	0,50 mol.L ⁻¹	0,25 mol.L ⁻¹	0,40 mol.L ⁻¹

6PYOSME1 Page: 5/11

Pour chacune des expériences 1, 2 et 3, on a tracé sur la figure 3 ci-dessous les trois courbes (a), (b) et (c) représentant l'avancement de la réaction lors des 50 premières minutes.

Associer à chacune des courbes de la figure 3 le numéro de l'expérience 1, 2 ou 3 correspondante. Justifier.

2.2. Influence de la forme du zinc (division et état de surface)


On reprend le montage de la figure 1 et on réalise trois nouvelles expériences :

- avec de la poudre de zinc ;
- avec de la grenaille de zinc récemment fabriquée ;
- avec de la grenaille de zinc de fabrication ancienne.

	Expérience 4	Expérience 5	Expérience 6		
Température	25 °C	25 °C	25 °C		
Masse initiale de zinc	0,50 g	0,50 g	0,50 g		
Forme du zinc	poudre	grenaille	grenaille de zinc de fabrication ancienne recouverte d'une couche de carbonate de zinc		
Volume de la solution d'acide sulfurique versé	75 mL	75 mL	75 mL		
Concentration initiale en ions oxonium	0,50 mol.L ⁻¹	0,50 mol.L ⁻¹	0,50 mol.L ⁻¹		

On trace les courbes x = f(t) pour les trois expériences et on obtient la figure 4 page suivante :

6PYOSME1 Page: 6/11

- 2.2.1. À partir des courbes obtenues lors des expériences 4 et 5, indiquer quelle est l'influence de la surface du zinc en contact avec la solution sur la vitesse de réaction.
- 2.2.2. En milieu humide, le zinc se couvre d'une mince couche de carbonate de zinc qui lui donne un aspect patiné.

À partir des courbes obtenues, indiquer quelle est l'influence de cette couche de carbonate de zinc sur la vitesse de réaction.

3. Pluies acides et gouttières

Les précipitations naturelles et non polluées ont un pH acide. Leur acidité est due au dioxyde de carbone qui se dissout dans l'eau.

L'équation entre l'eau et le dioxyde de carbone s'écrit :

$$CO_2(aq) + 2 H_2O(\ell) = HCO_3^-(aq) + H_3O^+$$

En France le pH moyen annuel des eaux de pluie est de l'ordre de 5.

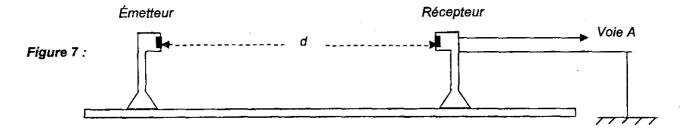
- 3.1. À partir de la valeur du pH citée ci-dessus, déterminer la valeur moyenne de la concentration en ions oxonium H_3O^+ rencontrés dans les eaux de pluie.
- 3.2. Les trois facteurs cinétiques étudiés dans la question 2. permettent-ils d'expliquer la longévité des gouttières en zinc dans les habitations ?

EXERCICE III. CÉRAMIQUES ET ULTRASONS (4 POINTS)

Les ultrasons sont utilisés dans de nombreux domaines de la vie courante : échographie, détecteurs de présence dans les alarmes, etc. Les émetteurs et les récepteurs d'ultrasons sont fréquemment constitués de céramiques piézoélectriques.

Les parties 1 et 2 de cet exercice sont indépendantes.

1. Émission et propagation de l'onde ultrasonore produite par une céramique piézoélectrique Lorsqu'on applique une tension sinusoïdale d'amplitude suffisante et de fréquence appropriée entre les deux faces métallisées et opposées d'une céramique piézoélectrique, elle se met à vibrer. Lorsque la céramique entre en résonance elle émet des ultrasons.


La fréquence des ultrasons émis est égale à la fréquence de vibration de la céramique émettrice.

1.1. Propagation des ondes ultrasonores

On réalise le montage schématisé figure 7. Le récepteur, constitué d'une céramique réceptrice, est placé à une distance d, face à la céramique émettrice.

Une tension de même fréquence que les ultrasons reçus apparaît aux bornes de la céramique réceptrice. On visualise cette tension sur la voie A d'un oscilloscope. L'oscillogramme obtenu est représenté sur la figure 8. Le coefficient de balayage est égal à 10 µs / div et la sensibilité verticale à 0,2 V / div.

On rappelle que la célérité des ultrasons dans l'air est $v_{air} = 340 \text{ m.s}^{-1}$ dans les conditions de l'expérience.

Coefficient de balayage : 10 µs/div

Figure 8:

- 1.1.1. Déterminer la période T et la fréquence f de la tension observée à l'oscilloscope.
- 1.1.2. En déduire la fréquence fu des ultrasons. Justifier.
- 1.1.3. Donner l'expression littérale puis la valeur de la longueur d'onde λ des ultrasons dans l'air.

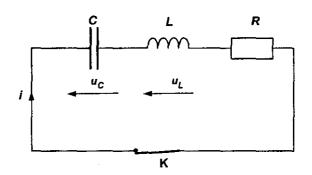
6PYOSME1 Page: 8/11

1.2. Résonance de la céramique émettrice

Pour une valeur appropriée de la fréquence de la tension sinusoïdale appliquée, son amplitude restant constante, la céramique émettrice entre en résonance. La tension sinusoïdale joue alors le rôle d'un excitateur et la céramique celui d'un résonateur.

- 1.2.1. Que peut-on dire de la valeur de la fréquence de la tension excitatrice à la résonance ?
- 1.2.2. Décrire qualitativement le phénomène de résonance en ce qui concerne l'amplitude de vibration de la céramique.

2. Oscillations libres dans un circuit RLC série


Pour étudier les conditions d'obtention d'oscillations électriques libres à la fréquence propre $f_0 = 40 \text{ kHz}$, on réalise le circuit schématisé figure 9. Un oscilloscope à mémoire permet d'enregistrer la tension aux bornes du condensateur. L'oscillogramme est représenté sur la figure 10.

La bobine a une inductance de valeur L = 1,0 mH; R est la résistance totale du circuit.

Le condensateur est initialement chargé sous une tension $U_C = 4,0 \text{ V}$.

À l'instant de date t = 0 s, on ferme l'interrupteur K.

Figure 9 :

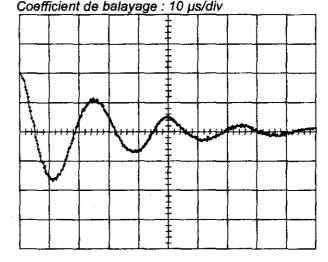


Figure 10:

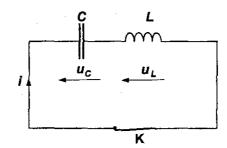
- 2.1. Comment appelle-t-on le type de régime correspondant à la figure 10 ?
- 2.2. Interpréter en termes d'énergie l'amortissement des oscillations que l'on observe.
- 2.3. Comment peut-on éviter l'amortissement des oscillations, sachant que la résistance du circuit ne peut pas être nulle ?
- 2.4. Dire si les affirmations ci-dessous concernant les oscillations libres d'un dipôle RLC sont vraies ou fausses. Commenter brièvement.

AFFIRMATION 1 : En augmentant la résistance R d'un dipôle RLC on observera toujours des oscillations amorties.

AFFIRMATION 2 : La valeur de la période propre d'un dipôle RLC dépend de la charge initiale du condensateur.

6PYOSME1 Page: 9/11

2.5. Détermination de la capacité du condensateur


Dans le cas étudié, l'amortissement est assez faible pour pouvoir confondre la pseudo-période du dipôle RLC avec la période propre T_0 du dipôle LC (L et C ayant les mêmes valeurs respectives dans les deux cas).

2.5.1. On considère le circuit LC représenté à la figure 11. L'interrupteur K est ouvert et la tension aux bornes du condensateur est égale à U_0 . À l'instant de date t=0 s, on ferme l'interrupteur K.

Après avoir établi l'expression de l'intensité i du courant en fonction de la tension u_C , montrer que l'équation différentielle vérifiée par la tension $u_C(t)$ aux bornes du condensateur est :

$$\frac{d^2 u_{\rm C}}{dt^2} + \frac{1}{LC} u_{\rm C} = 0$$

Figure 11:

2.5.2. La solution de cette équation différentielle peut s'écrire $u_c(t) = U_o \cos{(\frac{2\pi}{T_o}t)}$.

En déduire, en utilisant l'équation différentielle, l'expression littérale de la période propre T_0 du circuit.

2.5.3. Calculer la valeur à donner à la capacité C du condensateur de manière à obtenir des oscillations à la fréquence $f_0 = 40$ kHz.

6PYOSME1

Page: 10/11

ANNEXE À RENDRE AGRAFÉE AVEC LA COPIE

ANNEXE DE L'EXERCICE I

2.1.1.	La transformation radioactive d'un noyau possède un caractère						
	Mots proposés : •	prévisible	 aléatoire 	 périodique 			
2.1.2.	La désintégration d'un noya	au	celle d'un no	yau voisin			
	Expressions proposées : •	n'affecte pas	 modifie 	 est perturbée par 			
2.1.3.	Un noyau « âgé » a	de	se désintégrer qu'u	n noyau « jeune ».			
	Expressions proposées : •	plus de chances	• moins de chanc	es • autant de chances			
2.1.4.	L'évolution d'une population caractère	on d'un grand n	ombre de noyaux	radioactifs possède un			
	Mots proposés :	prévisible	aléatoire	• périodique			

ANNEXE DE L'EXERCICE II

Question 1.1. Tableau d'évolution du système

Equation ch	nimique	Zn (s)	+ 2 H ₃ O ⁺ =	Zn ²⁺ (aq)	+ H ₂ (g) +	2 H ₂ O (ℓ)	
Etat du système	Avancement (mol)	Quantités de matière (mol)					
Etat initial	0	<i>n</i> (Zn)₁	n(H ₃ O ⁺) _i	0	О	en excès	
Etat en cours de transformation	х					en excès	
Etat final	X _{max}					en excès	

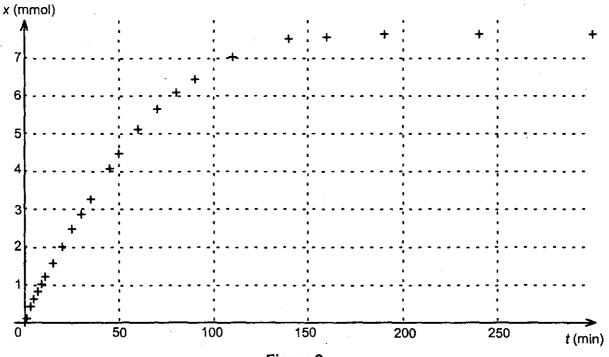


Figure 2

6PYOSME1 Page: 11/11