BREVET DE TECHNICIEN SUPÉRIEUR TRAVAUX PUBLICS

MATHÉMATIQUES ET SCIENCES PHYSIQUES

ÉPREUVE E3

UNITE U 32 – SCIENCES PHYSIQUES

Durée: 2 heures **Coefficient**: 1,5

A l'exclusion de tout autre matériel, l'usage de la calculatrice est autorisé conformément à la circulaire n°99-186 du 16 novembre 1999.

Documents à rendre avec la copie : aucun

Dès que le sujet vous est remis, assurez-vous qu'il soit complet. Le sujet comporte 4 pages, numérotées de 1 à 4.

Code sujet: TVE3SC

Partie A: Chimie

Les questions 1 et 2 sont indépendantes.

A.1) On considère deux récipients A et B.

Le récipient A contient un volume V_A d'une solution aqueuse d'acide chlorhydrique $(H_3O^+_{(aq)} + Cl^-_{(aq)})$, de concentration molaire c_A .

Le récipient B contient un volume V_B d'une solution aqueuse d'hydroxyde de potassium $(K^+_{(aq)} + HO^-_{(aq)})$, de concentration molaire c_B .

- A.1.1) Rappeler la définition de la concentration molaire.
- A.1.2) Calculer la quantité de matière n_A d'ions H_3O^+ contenus dans le récipient A en utilisant les données suivantes :

$$V_A = 0.60 L$$
 $c_A = 0.50 \text{ mol.L}^{-1}$

A.1.3) Calculer la quantité de matière n_B d'ions HO^- contenus dans le récipient B en utilisant les données suivantes :

$$V_B = 0.80 L$$
 $c_B = 1.30 \text{ mol.L}^{-1}$.

A.1.4) On mélange maintenant les contenus de ces deux récipients. Écrire l'équation-bilan de la réaction qui se produit. Quel sera le pH de la solution obtenue ?

<u>Donnée</u>: le produit ionique de l'eau dans les conditions de l'expérience est : $K_e = 10^{-14}$.

- A.2) Le butane est un gaz couramment utilisé comme combustible.
 - A.2.1) Donner sa formule brute.
- A.2.2) Écrire l'équation-bilan de sa combustion complète dans le dioxygène.
- A.2.1) On admet que la combustion d'une masse m_{but} de butane dans du dioxygène est complète.
 - A.2.1.1) Calculer la masse molaire du butane.
- A.2.1.2) Calculer la masse de chacun des produits obtenus à la fin de la combustion en utilisant la donnée suivante : m_{but} = 200 g.

<u>Données</u>: Masses molaires atomiques

- * du carbone : 12,0 g.mol⁻¹
- * de l'oxygène : 16,0 g.mol⁻¹
- * de l'hydrogène : 1,00 g.mol⁻¹

Partie B: étude d'un gaz parfait.

Un caisson hermétiquement fermé est rempli d'air, que l'on considèrera dans tout l'exercice comme un gaz parfait. Ce caisson a les dimensions suivantes :

longueur : L = 120,0 cm largeur : $\ell = 80,0$ cm hauteur : h = 90,0 cm

- B.1) Rappeler la loi des gaz parfaits pour n moles de gaz dans des conditions de pression, température et volume décrites par P, V et T. Préciser les unités de ces grandeurs.
- B.2) Ecrire l'équation aux dimensions relative à la loi des gaz parfaits puis en déduire la dimension de la constante des gaz parfaits notée R. En déduire une unité possible pour la constante des gaz parfaits.
- B.3) L'air dans le caisson est dans les conditions suivantes de pression et de température :
 - La pression P₁ dans le caisson est la pression atmosphérique ;
 - La température à l'intérieur du caisson est θ_1 telle que : $\theta_1 = 25,0$ °C.

On admet que, dans le système international d'unités, la constante R des gaz parfaits a pour valeur : R = 8.31 SI.

Calculer la quantité de matière d'air n₁ dans le caisson.

- B.4) La température à l'intérieur du caisson est portée à θ_2 telle que : $\theta_2 = 40,0$ °C. Calculer la nouvelle valeur P_2 de la pression de l'air.
- B.5) Quelle est la masse d'air m_a qu'il faudrait faire sortir du caisson pour que la pression de l'air qui y restera soit de nouveau égale à la pression atmosphérique, la température étant maintenue à $40,0\,^{\circ}\text{C}$?

<u>Données</u>: Pression atmosphérique P_{atm} : $P_{atm} = 1,013.10^5$ Pa. Masse molaire de l'air M_{air} : $M_{air} = 29,0$ g.mol⁻¹

Partie C: Acoustique.

C.1) Diapason.

Un diapason émet un son pur d'une seule fréquence. L'intensité de ce son est amortie au cours du temps. On place un microphone devant le diapason et on enregistre la tension recueillie aux bornes du microphone grâce à un dispositif d'acquisition de données adapté.

- C.1.1) Donner l'allure de la courbe représentant la tension ainsi relevée en fonction du temps. La commenter.
- C.1.2) La fréquence f_d du son émis par le diapason est : f_d = 440 Hz. On admet que la célérité du son dans l'air, notée c_s , est : c_s = 330 m.s⁻¹. En déduire la longueur d'onde λ_s de ce son.
- C.1.3) On éloigne le microphone du diapason d'une distance d telle que : d = 50 m. Combien de temps faudra-t-il au son pour parcourir cette distance ?

C.2) Sonomètre.

On place maintenant un sonomètre à une distance d₁ du diapason précédent. Lorsque le diapason est en train d'émettre un son, à un instant t donné, le sonomètre indique alors 80 dB.

- C.2.1) Quelle est l'intensité acoustique du son émis par le diapason?
- C.2.2) Calculer combien il faudrait de diapasons identiques jouant ensemble pour obtenir un son de 86 dB.
- C.2.3) On utilise un sonomètre situé initialement à la distance d_1 du diapason telle que : $d_1 = 5,0$ cm.
 - C.2.3.1) Établir la relation, donnée ci-dessous, permettant de relier l'affaiblissement A d'un signal et les positions initiale d_1 et finale d_2 du capteur par rapport à la source :

$$A = 20 \log (d_2/d_1)$$

C.2.3.2) Calculer la distance x dont il faut reculer le sonomètre pour que celui-ci n'indique plus que 65 dB.

Donnée: Intensité minimale audible : $I_0 = 10^{-12} \text{ W.m}^{-2}$.