BREVET DE TECHNICIEN SUPÉRIEUR

SYSTÈMES ÉLECTRONIQUES

EPREUVE E4

Étude d'un Système Technique

Unité E4.1 - ÉLECTRONIQUE

SESSION 2013

Durée : 4 heures Coefficient : 4

Matériel autorisé :

- Toutes les calculatrices de poche y compris les calculatrices programmables, alphanumériques ou à écran graphique à condition que leur fonctionnement soit autonome et qu'il ne soit pas fait usage d'imprimante (Circulaire n°99-186, 16/11/1999).

Tout autre matériel est interdit.

Documents à rendre avec la copie :

- Documents réponse BR1 à BR4

Le sujet se compose de :

A- Analyse fonctionnelle du système : A1 à A12

B- Sujet:

Questionnaire :B1 à B6Documents réponse :BR1 à BR4DocumentationBAN1 à BAN21

Dès que le sujet vous est remis, assurez-vous qu'il est complet.

BTS SYSTÈMES ÉLECTRONIQUES – Étude d'un Système Technique		Session 2013
U4.1 – Électronique	13SEE4EL1	36881011 2013

ANALYSE FONCTIONNELLE

Présentation du Récepteur GPS/Traceur SIMRAD CP33

Le système GPS

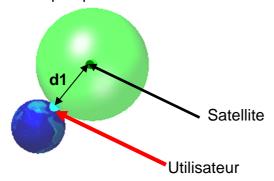
Le système GPS (Global Positioning System) est un système développé par l'armée américaine, dont le rôle est de :

- permettre à un utilisateur quelconque d'obtenir sa localisation en trois dimensions (latitude, longitude, altitude) par rapport à la surface terrestre,
- fournir une référence précise de temps.

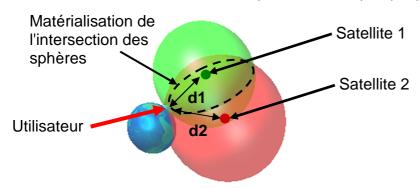
Le système GPS est organisé en trois segments :

Segment Spatial, actuellement constitué de 30 satellites opérationnels transmettant des informations de manière permanente vers les utilisateurs. Ces satellites sont répartis sur 6 orbites d'une altitude d'environ 20 200 km par rapport à la surface terrestre. Chaque satellite possède une période de révolution de 11h58min sur son orbite. La position relative des satellites doit permettre à un utilisateur quelconque de recevoir simultanément les signaux issus d'au moins 4 d'entre eux (12 satellites, au maximum, peuvent être simultanément visibles par un utilisateur),

- Segment Utilisateur, constitué par les récepteurs GPS qui assurent la réception des informations issues de satellites de la flotte GPS et fournissent à leurs utilisateurs des informations de position et de temps après avoir décodé, exploité et mis en forme les informations fournies par les satellites GPS en vue,
- Segment Contrôle, constitué par 5 stations émettrices et réceptrices réparties sur la surface de la terre, de manière à ce que chaque satellite puisse être, en permanence, contrôlé par au moins une station. Les stations reçoivent les informations fournies par les satellites, effectuent des calculs de corrections sur les


paramètres relatifs à leurs orbites et renvoient ces informations vers les satellites. De plus, ces stations ont pour mission de vérifier l'état de fonctionnement de chacun des satellites.

BTS SYSTÈMES ÉLECTRONIQUES – Étude o	Session 2013	
U4.1 – Électronique – Analyse Fonctionnelle	13SEE4EL1	Page : A1/12


Le principe de fonctionnement du système GPS

Afin de déterminer la position d'un utilisateur, un récepteur GPS effectue la mesure de la distance entre sa position et la position de plusieurs satellites en mesurant le temps de parcours de l'onde électromagnétique émise par chaque satellite utilisé.

Considérons un satellite se trouvant à la distance d₁ d'un récepteur GPS. Cette information nous indique que l'utilisateur se trouve sur une sphère de rayon d₁ autour du satellite.

Considérons deux satellites se trouvant respectivement aux distances d_1 et d_2 d'un récepteur GPS. Ces deux informations nous indiquent que l'utilisateur se trouve à l'intersection de deux sphères, de rayons respectifs d_1 et d_2 . L'intersection de deux sphères étant un cercle, l'utilisateur sait donc qu'il se trouve quelque part sur ce cercle.

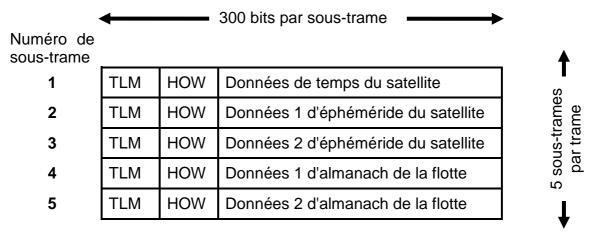
Considérons maintenant trois satellites se trouvant respectivement aux distances d_1 , d_2 et d_3 d'un récepteur GPS. Ces trois informations nous indiquent que l'utilisateur se trouve à l'intersection du cercle précédent et d'une sphère. Cette intersection est constituée de deux points, l'un à une distance aberrante par rapport à la terre, l'autre se trouvant à une distance cohérente. Ce dernier point constitue l'emplacement calculé par le récepteur GPS, qui sera fourni à l'utilisateur sous forme de latitude, longitude et altitude.

A partir de la mesure de ces trois distances, le récepteur GPS doit donc pouvoir calculer les trois informations de localisation suivantes :

- la longitude,
- la latitude,
- l'altitude.

À ces trois informations à déterminer s'ajoute une quatrième information constituée par l'erreur systématique Δd commise par un récepteur GPS donné sur les mesures de distances. Cette quatrième information nécessite l'acquisition des informations issues d'un quatrième satellite. Par conséquent, la présence de quatre satellites est indispensable à la localisation par GPS.

BTS SYSTÈMES ÉLECTRONIQUES – Étude d'un Système Technique		Session 2013
U4.1 – Électronique – Analyse Fonctionnelle	13SEE4EL1	Page : A2/12


Les informations transmises par les satellites GPS au segment utilisateur

Chaque satellite transmet des informations de deux natures différentes :

- **Données de temps** du satellite émetteur (date et heure), fournies au sein de la soustrame 1, le contenu identique dans chaque trame,
- **Éphéméride**: informations qui sont propres au satellite émetteur (coordonnées courantes du satellite, informations relatives à sa trajectoire, état du satellite...), fournies au sein des deux sous-trames consécutives 2 et 3, le contenu identique dans chaque trame,
- **Almanach** : informations concernant l'ensemble des satellites de la flotte GPS, fournies au sein de 25 trames consécutives. Les spécifications GPS assurent une validité de ces informations pendant une durée minimale de 60 jours. Elles sont rectifiées régulièrement par le segment contrôle.

Les données de navigation sont transmises par chaque satellite, avec un débit de 50 bits/seconde, au sein de trames organisées de la manière suivante :

- une trame est constituée de 1 500 bits répartis dans 5 sous-trames,
- une sous-trame est constituée de 300 bits répartis en 10 mots de 30 bits.

Toutes les sous-trames commencent chacune par les mots TLM (Telemetry) et HOW (Hand Over Word).

Structure du mot TLM

TLM

Préambule 1000 1011	Donnée	Parité
8 bits	26 bits	6 bits

Le préambule du mot TLM permet à un récepteur GPS d'identifier le début d'une sous-trame et de se synchroniser.

Structure du mot HOW

HOW

11011		
Temps dans la semaine	Numéro de sous-trame	Parité
	30u3-traine	
17 bits	3 bits	6 bits

BTS SYSTÈMES ÉLECTRONIQUES – Étude d'un Système Technique		Session 2013
U4.1 – Électronique – Analyse Fonctionnelle	13SEE4EL1	Page : A3/12

Remarques:

- les informations temporelles indispensables à un récepteur GPS se trouvent principalement dans la sous-trame 1 de n'importe quelle trame,
- les informations d'almanach permettent à un récepteur GPS de connaitre entre autres, lorsqu'on le met en service, la référence des satellites susceptibles d'être visibles. Ces informations sont, en général, mémorisées de manière permanente dans les récepteurs GPS, ce qui permet de diminuer la durée au bout de laquelle celui-ci est capable d'effectuer une localisation,
- les informations complètes d'almanach sont réparties dans les sous-trames 4 et
 5 de 25 trames successives. Il est donc nécessaire d'effectuer l'acquisition de 25 trames successives pour qu'un récepteur GPS charge l'ensemble de ces informations.

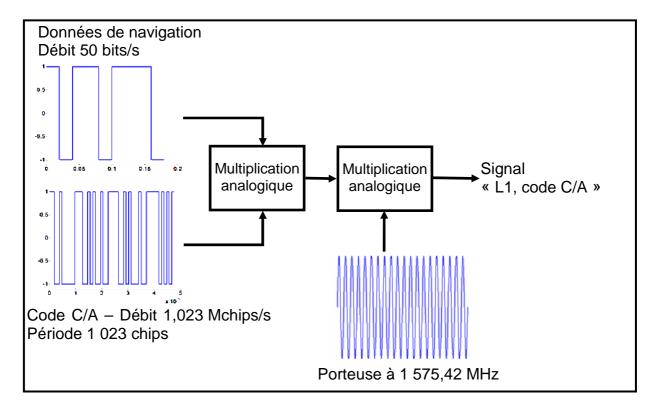
La modulation des informations transmises par les satellites GPS

Tous les satellites de la flotte GPS émettent leurs informations avec deux porteuses identiques pour chaque satellite :

- une porteuse de fréquence 1 575,42 MHz, transmettant des informations dites
 « L1, code C/A » fournissant une faible précision, destinées aux applications grand public,
- une porteuse de fréquence 1 226,7 MHz, transmettant des informations dites
 « L2, code P » fournissant une grande précision, destinées aux applications militaires.

Afin d'identifier un satellite parmi les autres, les données transmises par chaque satellite sont associées à un code qui lui est propre.

Pour les informations « L1, code C/A », on utilise un code binaire pseudo-aléatoire. Ce code est constitué d'une succession de 1 023 chips⁽¹⁾ se répétant périodiquement. Il est transmis avec un débit de 1,023 Mchips/s.


Les données de navigation, quant à elles, sont transmises au rythme de 50 bits/s.

Les données de navigation et le code C/A sont combinés et viennent moduler la porteuse de fréquence 1 575,42 MHz en phase, réalisant ainsi une modulation BPSK, qui est une modulation numérique de phase à deux états.

Note (1) : Pour faire la différence entre les données de navigation transmises par un satellite <u>GPS et l</u>e code pseudo-aléatoire qui lui est associé, **chaque bit du code pseudo-aléatoire est dénommé « chip »**.

BTS SYSTÈMES ÉLECTRONIQUES – Étude o	Session 2013	
U4.1 – Électronique – Analyse Fonctionnelle	13SEE4EL1	Page : A4/12

Constitution de l'information « L1, code C/A » transmise par un satellite GPS

Ce principe de modulation permettant d'utiliser une porteuse unique pour des émetteurs différents (ici, les satellites) identifiés par un code dont le débit est bien supérieur à celui des informations utiles à transmettre fait partie des **modulations à étalement de spectre** (modulations CDMA).

Comme son nom l'indique, une modulation à étalement de spectre entraîne un accroissement très important de l'occupation spectrale du signal modulé CDMA, par rapport à l'occupation spectrale du signal utile en bande de base.

Cette modulation permet d'apporter une solution à l'encombrement des bandes fréquentielles liées à la multiplicité croissante des sources émettrices dans tous les domaines d'applications utilisant des ondes hertziennes (radiodiffusion, télédiffusion, télécommunications mobiles, WiFi, Bluetooth, ...) puisque de nombreuses sources peuvent utiliser la même fréquence porteuse, à condition d'utiliser des codes différents.

BTS SYSTÈMES ÉLECTRONIQUES – Étude o	Session 2013	
U4.1 – Électronique – Analyse Fonctionnelle	13SEE4EL1	Page : A5/12

Le Récepteur GPS/Traceur SIMRAD CP33

Le Récepteur GPS/Traceur SIMRAD CP33 est un appareil destiné à la navigation maritime permettant de :

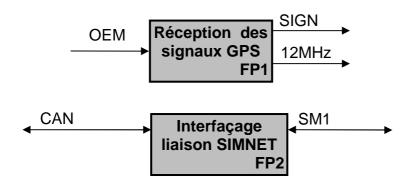
- déterminer et visualiser la position du bateau sur le globe terrestre,
- programmer le parcours du bateau, en association avec un pilote automatique,
- échanger des informations avec d'autres appareils destinés à la navigation maritime.

Entrées

- **OEM**: onde électromagnétique modulée CDMA, de fréquence porteuse 1 575,42MHz, caractéristique de la bande GPS « L1, code C/A »,
- **Informations de cartes C-MAP**: informations issues d'un lecteur de cartes C-MAP fournissant une cartographie,
- Commandes manuelles : appuis sur les touches de la face avant par l'utilisateur.

Sorties

- Informations visuelles : images couleur destinées à l'utilisateur.


Entrées/Sorties

- Informations au format NMEA0183: ce format est défini dans la norme internationale d'échange d'informations basé sur une liaison série asynchrone. Ces informations sont échangées avec d'autres appareils destinés à la navigation maritime,
- **Informations au format SIMNET**: format propriétaire d'échange d'informations basé sur un bus CAN étendu. Ces informations sont échangées avec d'autres appareils destinés à la navigation maritime.

BTS SYSTÈMES ÉLECTRONIQUES – Étude o	Session 2013	
U4.1 – Électronique – Analyse Fonctionnelle	13SEE4EL1	Page : A6/12

Schéma fonctionnel partiel de 1^{er} degré du Récepteur GPS/Traceur SIMRAD CP33

L'étude portera sur les deux fonctions présentées ci-dessous.

Description des fonctions principales

FP1: Réception des signaux GPS

Réalise l'acquisition des signaux issus des satellites de la flotte GPS visibles, et transpose ces signaux vers une fréquence porteuse plus faible.

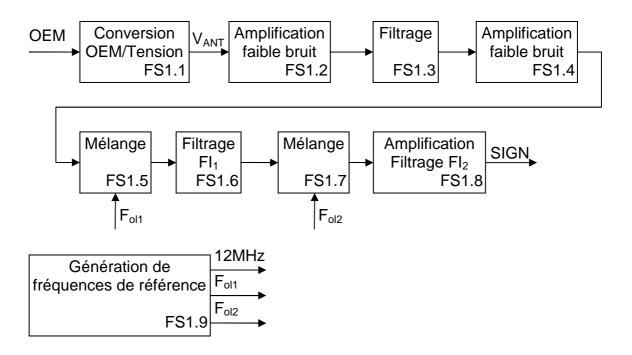
Entrée

- OEM : onde électromagnétique modulée CDMA de fréquence porteuse 1 575,42 MHz caractéristique de la bande GPS « L1, code C/A ».

Sorties

- SIGN : signal modulé CDMA de fréquence porteuse 3,42 MHz,
- 12MHz : signal périodique de fréquence 12 MHz, utilisé pour l'échantillonnage du signal SIGN par un ASIC.

FP2: Interfaçage liaison SIMNET


Réalise la conversion d'informations série au format électrique compatible CMOS en informations série au format SIMNET.

Entrée/Sortie

- SM1 : liaison série asynchrone au format électrique compatible CMOS, fournie par un microcontrôleur (4800 bits/s – Un bit Stop – Pas de parité).
- CAN : liaison série du réseau SIMNET, basé sur la norme Bus CAN (Identifiant sur 29 bits Débit 250 kbits/s).

BTS SYSTÈMES ÉLECTRONIQUES – Étude o	Session 2013	
U4.1 – Électronique – Analyse Fonctionnelle	13SEE4EL1	Page : A7/12

Schéma fonctionnel de 2ème degré de la fonction FP1

Description des fonctions secondaires de FP1

FS1.1: Conversion OEM/Tension

Entrée

- OEM : onde électromagnétique modulée CDMA, de fréquence porteuse 1 575,42 MHz caractéristique de la bande GPS « L1, code C/A ».

Sortie

V_{ANT}: signal électrique, image de l'onde électromagnétique reçue.

FS1.2: Amplification faible bruit

Réalise l'amplification du signal d'entrée, en ajoutant le moins de bruit possible.

Entrée:

- V_{ANT} : signal électrique, image de l'onde électromagnétique reçue.

Sortie:

- signal amplifié, image de l'onde électromagnétique reçue.

FS1.3: Filtrage

Sélectionne la fréquence centrale et la largeur de bande utile du spectre d'entrée.

Entrée:

- signal amplifié, image de l'onde électromagnétique reçue.

Sortie:

- signal filtré dans la bande de fréquences utiles d'entrée.

FS1.4: Amplification faible bruit

Réalise l'amplification du signal filtré, en ajoutant le moins de bruit possible.

Entrée :

- signal filtré dans la bande de fréquences utiles d'entrée.

Sortie:

- signal électrique filtré dans la bande de fréquences utiles d'entrée, amplifié.

BTS SYSTÈMES ÉLECTRONIQUES – Étude o	Session 2013	
U4.1 – Électronique – Analyse Fonctionnelle	13SEE4EL1	Page : A8/12

FS1.5 : Mélange

Effectue la multiplication du signal filtré avec le signal de sortie de l'oscillateur local, de fréquence F_{ol1}.

Entrées :

- signal filtré dans la bande de fréquences utiles d'entrée, amplifié.
- signal sinusoïdal de fréquence Fol1.

Sortie:

- signal issu du mélange des signaux d'entrée.

FS1.6: Filtrage Fl₁

Effectue le filtrage du signal d'entrée autour de la fréquence intermédiaire Fl₁.

Entrée:

- signal issu du mélange des signaux d'entrée de FS1.5.

Sortie:

- signal filtré autour de la fréquence intermédiaire Fl₁.

FS1.7 : Mélange

Effectue la multiplication du signal filtré autour de la fréquence intermédiaire Fl₁ avec le signal de sortie de l'oscillateur local, de fréquence F_{ol2}.

Entrées :

- signal filtré autour de la fréquence intermédiaire Fl₁,
- signal sinusoïdal de fréquence F_{ol2}.

Sortie:

- signal issu du mélange des signaux d'entrée.

FS1.8 : Amplification Filtrage FI₂

Effectue le filtrage et l'amplification du signal d'entrée autour de la fréquence intermédiaire Fl₂.

Entrée:

- signal issu du mélange des signaux d'entrée de FS1.7.

Sortie:

- signal amplifié et filtré autour de la fréquence intermédiaire Fl₂.

FS1.9 : Génération de fréquences de référence.

Génère les signaux périodiques nécessaires au fonctionnement de la réception des signaux GPS.

Sorties:

- 12MHz : signal rectangulaire de fréquence 12 MHz,
- F_{ol1} : signal sinusoïdal de fréquence F_{ol1},
- F_{ol2}: signal sinusoïdal de fréquence F_{ol2}.

BTS SYSTÈMES ÉLECTRONIQUES – Étude d	Session 2013	
U4.1 – Électronique – Analyse Fonctionnelle	13SEE4EL1	Page : A9/12

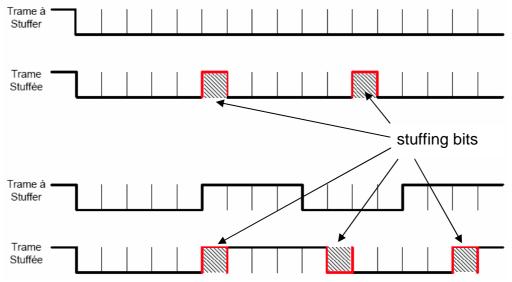
SPECIFICATIONS DU BUS CAN

Le réseau de transmission d'informations SIMNET est un réseau propriétaire (SIMRAD) basé sur un bus CAN, version 2.B (champ d'identifiant sur 29 bits).

Le bus CAN est un bus de transmission d'informations, bidirectionnel et différentiel, composé physiquement de deux lignes dénommées CANH et CANL :

- Les niveaux des signaux sont fonction de la différence de potentiel entre ces deux lignes,
- les niveaux logiques ne sont pas définis par des états '0' ou '1', mais par des états récessifs ou dominants.

La constitution d'une trame CAN étendue (identifiant sur 29 bits) est donnée ci-dessous :


Start of frame (SOF)	Champ d'arbitrage	Champ de contrôle	Champ de données	Champ CRC	Champ d'acquittement	End of frame (EOF)
1 bit dominant	32 bits	6 bits	8 octets pour SIMNET	16 bits	2 bits	7 bits récessifs

De plus, le détail du contenu du champ d'arbitrage est le suivant :

Poids fort de l'identifiant	SRR	IDE	Poids faible de l'identifiant	RTR
11 bits	1 bit	1 bit	18 bits	1 bit

- SRR (Substitute Remote Request): 1 bit récessif,
- IDE (Identifier Extension bit): 1 bit récessif,
- RTR (Remote Transmission Request): 1 bit dominant pour une trame de données et récessif pour une trame de requête.

D'autre part, après 5 états consécutifs identiques dans un message, un bit supplémentaire est ajouté, d'état inverse à ces 5 états consécutifs. Ceci permet d'éviter de laisser la ligne à un niveau constant trop longtemps. Ces bits supplémentaires sont appelés bits de remplissage ou « stuffing bits ».

BTS SYSTÈMES ÉLECTRONIQUES – Étude o	Session 2013	
U4.1 – Électronique – Analyse Fonctionnelle	13SEE4EL1	P age : A10/12

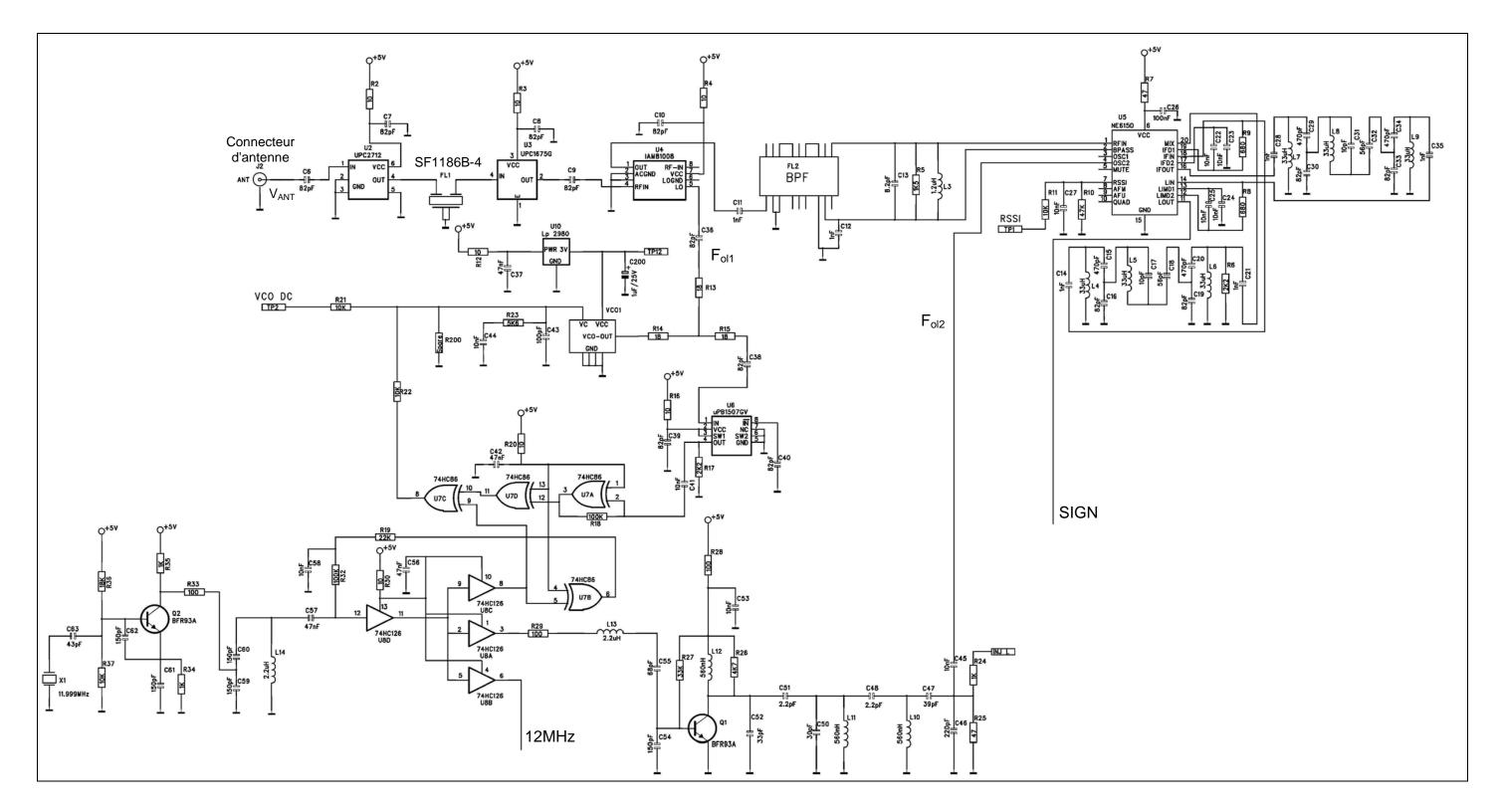


Schéma structurel de la fonction FP1

BTS SYSTÈMES ÉLECTRONIQUES – Étude o	Session 2013	
U4.1 – Électronique – Analyse Fonctionnelle	13SEE4EL1	Page : A11/12

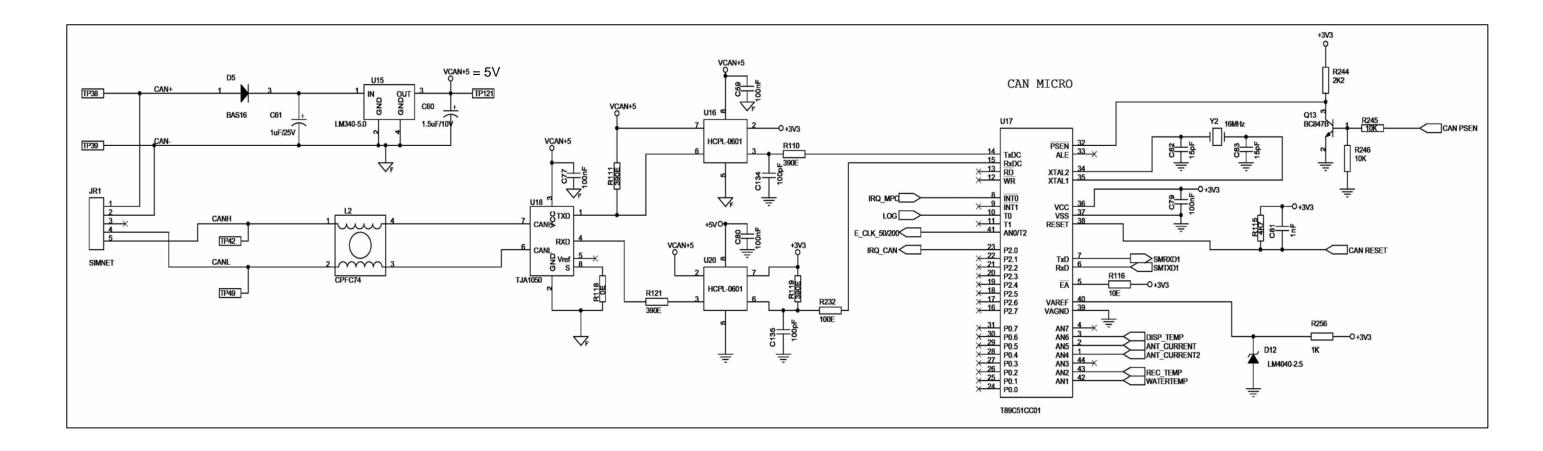


Schéma structurel de la fonction FP2

BTS SYSTÈMES ÉLECTRONIQUES – Étude o	Session 2013	
U4.1 – Électronique – Analyse Fonctionnelle	13SEE4EL1	Page : A12/12

SUJET

Les parties A, B et C du sujet sont indépendantes. Les réponses aux questions sont à rendre sur feuilles d'examen. Les documents réponse sont à rendre dans tous les cas avec la copie, même s'ils n'ont pas été remplis.

PARTIE A: Analyse fonctionnelle

A1 : Durées de propagation et d'acquisition des informations issues d'un satellite

Compte tenu de son mouvement, la distance d'un satellite par rapport à un utilisateur quelconque peut varier entre 20 200 km et 25 820 km.

La vitesse de propagation des ondes électromagnétiques est $c = 3.10^8$ m/s. Les ondes se propagent en ligne droite à travers l'atmosphère.

Q1. Calculer les valeurs extrêmes du temps de propagation des ondes transmises par les satellites.

À partir des informations fournies en pages A3 et A4 du dossier d'analyse fonctionnelle :

- **Q2.** Déterminer le nombre minimal de trames GPS permettant d'acquérir une information complète de temps, d'almanach et d'éphéméride émise par un satellite unique.
- **Q3.** Calculer le nombre de bits nécessaires à l'acquisition d'une information complète de temps, d'almanach et d'éphéméride d'un satellite unique.
- **Q4.** Déduire, du résultat précédent, la durée correspondant à l'acquisition d'une information complète de temps, d'almanach et d'éphéméride d'un satellite unique.

Les fabricants de récepteurs GPS implémentent l'almanach en usine, si bien que seule l'acquisition de l'éphéméride peut s'avérer nécessaire pour obtenir un positionnement correct.

- **Q5.** Déterminer le nombre de sous-trames nécessaires à l'acquisition des données de temps d'un satellite unique. Indiquer le nombre de bits correspondants.
- **Q6.** Déterminer le nombre de sous-trames nécessaires à l'acquisition complète des données d'éphéméride d'un satellite unique. Indiquer le nombre de bits correspondants.
- **Q7.** Déterminer le nombre de sous-trames nécessaires à l'actualisation des données de temps et d'éphéméride d'un satellite unique. Indiquer le nombre de bits correspondants.
- **Q8.** Calculer la périodicité d'actualisation des informations de temps et d'éphéméride.
- **Q9.** Relever dans la documentation technique (documents BAN2 et BAN3), le taux de mise à jour des informations GPS du récepteur, spécifié par le constructeur.

Les questions précédentes montrent une différence importante entre la périodicité d'actualisation et le taux de mise à jour, géré par le récepteur GPS entre 2 actualisations.

Q10. Indiquer le temps maximum nécessaire à un récepteur GPS pour indiquer une information cohérente après un redémarrage.

BTS SYSTÈMES ÉLECTRONIQUES – Étude o	Session 2013	
U4.1 – Électronique – Sujet	13SEE4EL1	Page : B1/6

A2 : Caractéristiques fréquentielles des informations traitées par le Récepteur GPS/Traceur SIMRAD CP33

À partir des informations fournies en pages A4 et A5 du dossier d'analyse fonctionnelle, et de la documentation du Récepteur GPS/Traceur SIMRAD CP33 (document BAN3) :

Q11. Indiquer la fréquence de la porteuse qui est traitée par ce récepteur.

Sachant que l'occupation spectrale correspondant à la transmission de bits ou de chips de durée Tb est égale à $\frac{2}{Tb}$:

- Q12. Calculer l'occupation spectrale des informations de navigation du GPS.
- Q13. Calculer l'occupation spectrale du code C/A.
- Q14. Déduire, de ces deux derniers résultats, l'occupation spectrale du signal modulé « L1, code C/A » et justifier la dénomination « modulation à étalement de spectre ».
- Q15. Expliquer l'intérêt d'utiliser ce type de modulation.

PARTIE B : Étude de FP1 - Réception des signaux GPS

B1: Généralités

- **Q16.** Indiquer le nom donné à un dispositif de réception basé sur le schéma fonctionnel de 2^{ème} degré de la fonction FP1 (dossier d'analyse fonctionnelle, pages A8 et A9).
- **Q17.** Délimiter, sur le schéma structurel de la fonction FP1 (document réponse BR4), les fonctions secondaires FS1.2 à FS1.9.

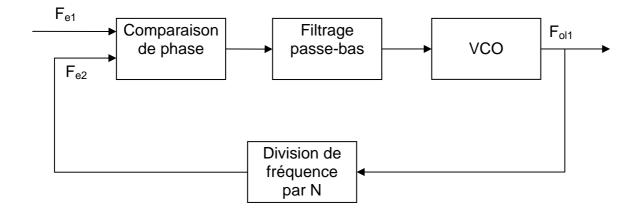
Remarques:

- On pourra s'aider des documentations des composants IAM81008 (document BAN4) et NE615D (document BAN5).
- Un schéma structurel plus lisible est également fourni, page A11 du dossier d'analyse fonctionnelle.

BTS SYSTÈMES ÉLECTRONIQUES – Étude d'un Système Technique		Session 2013
U4.1 – Électronique – Sujet	13SEE4EL1	Page : B2/6

B2 : Étude de la génération de fréquences de référence

Cette fonction (FS1.9) fournit deux fréquences, F_{ol1} et F_{ol2} , obtenues par multiplications de la fréquence délivrée par un oscillateur construit autour du transistor Q2. La structure étudiée pour la génération de F_{ol2} est la suivante :


- **Q18.** Indiquer la référence du composant qui impose une fréquence d'environ 12 MHz à l'oscillateur.
- **Q19.** Déterminer et indiquer sur le document réponse BR1, en faisant clairement apparaître la méthode utilisée, les fréquences des signaux repérés V(Fref) et V(Fol2) du relevé précédent.
- **Q20.** Indiquer la relation simple qui existe entre les valeurs des fréquences F_{ref} et F_{ol2}.

La courbe de réponse fréquentielle du filtre se trouvant entre les points repérés Fref1 et Fol2 sur le schéma ci-dessus est donnée document réponse BR1.

- **Q21.** Relever, en les repérant sur la courbe, la fréquence centrale et la bande passante à -3 dB de ce filtre.
- **Q22.** Expliquer le principe sur lequel est basée la production du signal F_{ol2} et justifier la présence des circuits logiques 74HC126.

La génération de la fréquence F_{ol1} est réalisée grâce à une boucle à verrouillage de phase dont le schéma fonctionnel simplifié est le suivant :

BTS SYSTÈMES ÉLECTRONIQUES – Étude d'un Système Technique		Session 2013
U4.1 – Électronique – Sujet	13SEE4EL1	Page : B3/6

- **Q23.** Donner la relation existant entre les fréquences d'entrée F_{e1} et F_{e2} lorsque la boucle à verrouillage de phase est verrouillée.
- **Q24.** Déduire du résultat précédent la relation existant entre les fréquences F_{e1} et F_{ol1} lorsque la boucle à verrouillage de phase est verrouillée.
- **Q25.** Indiquer, en utilisant le schéma structurel de la fonction FP1 (page A11 du dossier d'analyse fonctionnelle), la référence des composants réalisant la comparaison de phase.
- **Q26.** Indiquer, de même, la référence du composant réalisant la division de fréquence par N.
- **Q27.** Déterminer, à l'aide de la documentation du composant uPB1507GV (documents BAN9 et BAN10) et du schéma structurel de la fonction FP1 (page A11 du dossier d'analyse fonctionnelle), le taux N de division de ce composant.
- **Q28.** Déduire des résultats précédents la valeur de la fréquence F_{ol1}.
- **Q29.** Calculer la valeur de la fréquence intermédiaire (notée FI₁) en sortie de la fonction FS1.5.
- **Q30.** Déterminer la fréquence appelée fréquence image F_{im} du signal qui, présent en entrée du récepteur, provoquerait un signal de même fréquence intermédiaire.
- **Q31.** Montrer que le composant SF1186B-4 (documents BAN13 et BAN14) réalisant la fonction FS1.3 permet d'éliminer les signaux de fréquence F_{im}.

B3 : Étude de la chaîne d'amplification et filtrage

Les spécifications des satellites GPS précisent que la puissance des signaux reçus sur la surface de la terre doit être supérieure à -130 dBm.

Il est donc indispensable de réaliser une amplification de puissance sur ce signal avant de le démoduler.

- Q32. Relever, dans les documentations des composants UPC2712 (document BAN11) et UPC1675G (document BAN12), l'amplification minimale de puissance et la fréquence de coupure à -3dB de chacun d'eux.
- Q33. Relever, dans la documentation constructeur du filtre SF1186B-4 (documents BAN13 et BAN14), l'atténuation maximale à la fréquence de travail et la bande passante à -3 dB.

BTS SYSTÈMES ÉLECTRONIQUES – Étude d'un Système Technique		Session 2013
U4.1 – Électronique – Sujet	13SEE4EL1	Page : B4/6

Q34. Déduire, des résultats précédents, les valeurs du gain minimal total et de la bande passante totale à -3dB de l'association des fonctions FS1.2 – FS1.3 – FS1.4.

La puissance reçue sur l'antenne est égale à -130 dBm.

- **Q35.** Calculer, en dBm, la puissance présente en sortie de la fonction FS1.4 et reporter cette valeur dans le tableau correspondant du document réponse BR2.
- **Q36.** Donner la relation existant entre une puissance exprimée en dBm et la même puissance exprimée en Watts.
- Q37. Calculer, en Watts, les valeurs de la puissance reçue sur l'antenne et de la puissance de sortie de la fonction FS1.4. Reporter ces valeurs dans le tableau correspondant du document réponse BR2.

L'impédance de référence du récepteur GPS est égale à 50Ω.

Q38. Calculer la valeur efficace de la tension à l'entrée de la fonction FS1.2 et en sortie de la fonction FS1.4. Reporter ces valeurs dans le tableau correspondant du document réponse BR2.

PARTIE C : Étude de FP2 – Interfaçage liaison SIMNET

Le schéma structurel de cette fonction est fourni page A12 du dossier d'analyse fonctionnelle. Les informations relatives au fonctionnement du bus CAN sont données page A10 du dossier d'analyse fonctionnelle.

Le rôle du composant TJA1050 (U18) est d'effectuer l'interfaçage entre le Bus CAN du réseau SIMNET et le microcontrôleur T89CS51CC001 (U17).

C1 : Étude de la conversion niveaux SIMNET ↔ Niveaux CMOS

- Q39. Rechercher, en utilisant la documentation du composant TJA1050 (documents BAN15 à BAN17), les valeurs typiques des niveaux de tension correspondant respectivement à un état récessif et à un état dominant sur chacune des lignes CANL et CANH puis reporter ces valeurs dans le tableau correspondant du document réponse BR2.
- **Q40.** Déterminer, à partir du tableau 1 du document BAN16, la correspondance entre les niveaux logiques des broches RXD et TXD et les états du bus CAN, puis reporter ces résultats dans le tableau correspondant du document réponse BR2.

La documentation du composant HCPL-0601 est donnée documents BAN18 et BAN19.

- Q41. Calculer l'intensité minimale du courant circulant dans la résistance R121 pour chaque état logique de la broche RXD (on considère qu'un niveau logique '0' correspond une tension VRXD ≈ 0V). Reporter cette valeur dans le tableau correspondant du document réponse BR2.
- **Q42.** Justifier la présence de la résistance R119 associée au composant U20.
- Q43. Calculer, pour chacun des niveaux logiques de la broche RXD du composant TJA1050 (U18), les valeurs de la tension ramenée sur la broche RxDC du composant T89C51CC01 (U17) ainsi que les niveaux logiques correspondants. Reporter ces résultats dans le tableau du document réponse BR2.

BTS SYSTÈMES ÉLECTRONIQUES – Étude d'un Système Technique		Session 2013
U4.1 – Électronique – Sujet	13SEE4EL1	Page : B5/6

C2 : Analyse d'une trame SIMNET

Lors de la réception de messages GPS, une des trames SIMNET élaborées par le Traceur/GPS SIMRAD CP33 a été isolée et visualisée sur un oscilloscope sur le document réponse BR2.

- **Q44.** Mesurer la durée élémentaire d'un état (durée délimitée par des curseurs). En déduire la valeur du débit binaire correspondant et reporter ces valeurs sur le document réponse BR2.
- **Q45.** Indiquer, sur le document réponse BR2, à partir du relevé et en exploitant la documentation du composant TJA1050 (document BAN17), le numéro de voie correspondant respectivement aux signaux CANL et CANH.

Pour les questions suivantes, il est admis que, sur le relevé du document réponse BR3, la voie 1 correspond à CANL et la voie 2 à CANH.

- **Q46.** Relever, à partir du chronogramme fourni document réponse BR3, l'état (Dominant ou Récessif) associé à chacun des bits de la trame relevée et reporter ces valeurs dans le tableau 1 (on représentera un état dominant par 'D' et un état récessif par 'R').
- Q47. Encadrer, dans le tableau 1 du document réponse BR3, les bits de remplissage (« Stuffing Bits »).
- **Q48.** Remplir le tableau 2 du document réponse BR3 après avoir éliminé les bits de remplissage et en remplaçant les états dominants ou récessifs par les niveaux logiques '0' ou '1' associés.
- **Q49.** Compléter, à partir des questions précédentes, le tableau 3 du document réponse BR3, en indiquant les 5 premiers caractères (exprimés en hexadécimal) représentant l'identifiant de la trame relevée (en regroupant les bits conformément aux délimiteurs imposés).

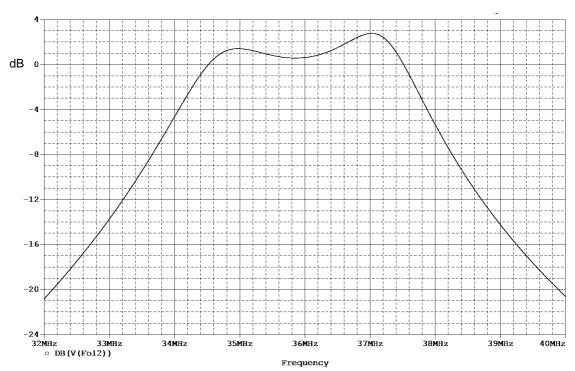
C3: Programmation du microcontrôleur T89C51CC01 (U17)

Le microcontrôleur de la fonction FP2 dialogue avec un microcontrôleur central. Il élabore et transmet les informations au réseau SIMNET par l'intermédiaire du composant TJA1050. Un extrait du programme de configuration de l'UART (document BAN20) et du Timer1 (document BAN21) est fourni document réponse BR3.

- **Q50.** Préciser le mode de fonctionnement du Timer1 imposé par l'instruction TMOD = 0x20.
- **Q51.** Expliquer le rôle de l'instruction TCON = 0x40.
- Q52. L'expression du débit binaire de l'UART ainsi configurée est :

$$D\acute{e}bit (bits/s) = \frac{Fosc}{32 \times 12 \times (256 - TH1)}$$
, où $Fosc$ est la fréquence du quartz associé

au microcontrôleur (voir schéma structurel, page A12 du dossier d'analyse fonctionnelle) et *TH*1 est le contenu initial du Timer1. Sachant que l'on désire un débit binaire de 9600 bits/s, calculer la valeur de *TH*1 et compléter l'élément de programme fourni dans le document réponse BR3 en exprimant la valeur obtenue en hexadécimal.


BTS SYSTÈMES ÉLECTRONIQUES – Étude d'un Système Technique		Session 2013
U4.1 – Électronique – Sujet	13SEE4EL1	Page : B6/6

DOCUMENT RÉPONSE

Fréquence de V(Fref) : Fréquence de V(F_{ol2}) :

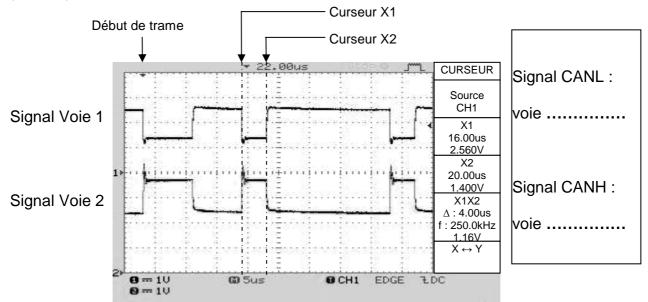
BTS SYSTÈMES ÉLECTRONIQUES – Étude o	Session 2013	
U4.1 – Électronique – Document réponse	13SEE4EL1	Page : BR1/4

Q35, Q37, Q38

	Entrée de la	Sortie de la
	fonction FS1.2	fonction FS1.4
Puissance (dBm)	-130	
Puissance (W)		
Valeur efficace de la tension (µV)		

Q39

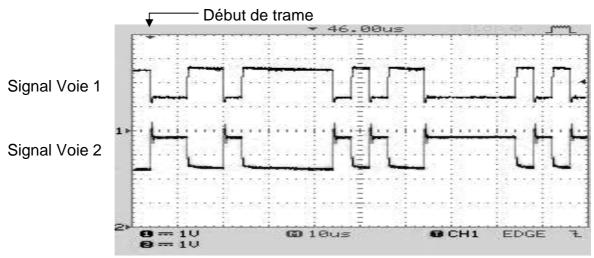
	État ré	ecessif	État dominant						
	Ligne CANL	Ligne CANH	Ligne CANL	Ligne CANH					
Valeur typique									
de la tension (V)									


Q40

Niveau sur le bus CAN	Niveau logique sur les broches RXD ou TXD
État récessif	
État dominant	

Q41, Q43

Niveau logique de RXD	Intensité du courant dans R121 (mA)	Tension en RxDC (V)	Niveau logique de RxDC
'0'			
'1'			


Q44 et Q45

Durée d'un bit : µs Débit binaire :.....kbits/s

BTS SYSTÈMES ÉLECTRONIQUES – Étude d	Session 2013	
U4.1 – Électronique – Document réponse	13SEE4EL1	Page : BR2/4

Q46, Q47, Q48, Q49

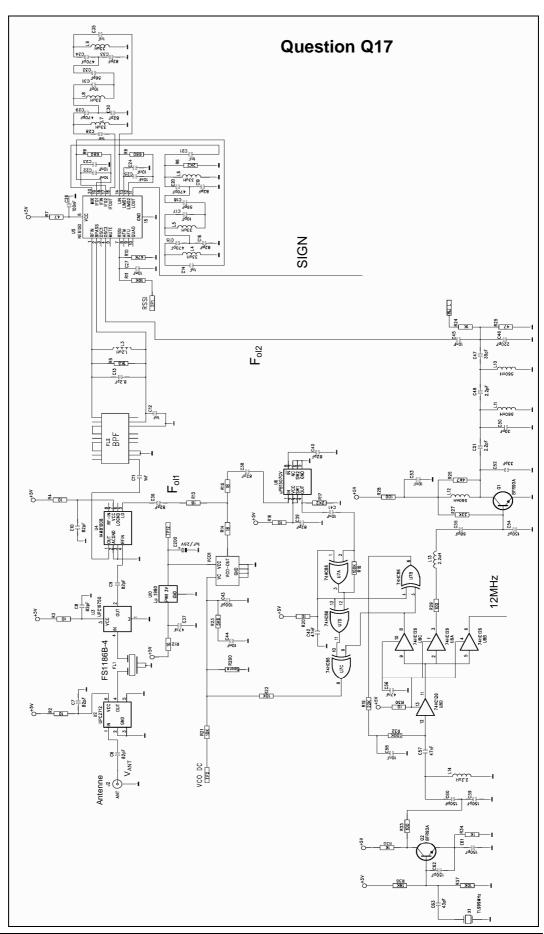
Tableau 1

Ét	États récessifs (R) ou dominants (D) de la trame CAN ci-dessus																					

Tableau 2

Nive	Niveau logique des bits successifs de la trame, après avoir éliminé les bits de remplissage																			
SOF	129	128	127	126	125	124	123	122	I21	120	I19	SRR	IDE	I18	117	I 16	I15	I14	I13	I12

Tableau 3	Rec	Reconstitution du début de l'identifiant de la trame proposée															
Valeurs des bits	129	128	127	126	125	124	123	122	I21	120	I19	I18	117	I16	115	114	I13
Valeur hexadécimale de chaque groupe de bits																	


Q50, Q51 et Q52

```
// Configuration du Timer1
TMOD = 0x20;

// Initialisation du Timer1

TH1 = .....; // À compléter
TL1 = TH1;
TCON = 0x40;
```

BTS SYSTÈMES ÉLECTRONIQUES – Étude o	Session 2013	
U4.1 – Électronique – Document réponse	13SEE4EL1	Page : BR3/4

BTS SYSTÈMES ÉLECTRONIQUES – Étude d	Session 2013	
U4.1 – Électronique – Document réponse	13SEE4EL1	Page : BR4/4

DOCUMENTATION TECHNIQUE

Sommaire

Traceur/GPS SIMRAD CP33	BAN2 à BAN3
IAM81008	BAN4 à BAN5
NE615D	BAN6 à BAN8
uPB1507GV	BAN9 à BAN10
UPC2712	BAN11
UPC1675G	BAN12
Filtre SF1186B-4	BAN13 à BAN14
TJA1050	BAN15 à BAN17
HCPL0601	BAN18 à BAN19
T89C51CC01 : UART	BAN20
T89C51CC01 : TIMER1	BAN21

BTS SYSTÈMES ÉLECTRONIQUES – Étude o	Session 2013	
U4.1 – Électronique – Documentation	13SEE4EL1	Page : BAN1/21

GPS/Traceur SIMRAD CP33 pour navigation maritime

Caractéristiques

Généralités

Tension

d'alimentation: 12 et 24 V CC (10 à 32 V CC max) 8 à 17 watt

Câble

d'alimentation: Câble alimentation/NMEA, 2 m (Réf. 153-6070-002) Dimensions: H:144 mm (5.8") L:252 mm (10") P:70 mm (2.8")

Poids: 1,5 kg (3.3 lbs)

Environnement: -10 à +55°C, IEC 60945, étanche selon les normes USC 46

CFR et IP55

Boîtier: Arrière en aluminium moulé, face avant en polycarbonate

Ecran: TFT couleur rétroéclairé: 5.7" 320 x 240 pixels, ou.....

STN monochrome transflectif 6" 320 x 240 pixels

Présentation: 4 pages. Manuel, commutateur externe dédié, et séquence-

ment automatique.

Interface: 1 port entrée/sortie NMEA 0183

1 port SimNet / NMEA 2000 Transfert PC: WPL et RTE

Alarme - sortie signal 5 V, 50 mA

Fusible: T6.3A temporisé (5x20 mm)

Réseau SimNet

Nombre maximum de produits connectés sur le réseau:	50
Longueur maximum du câblage (sans les 30m du capteur	r vent): 120 m (400')
Vitesse bus:	250 kbit/seconde
Courant maximum dans une prise SimNet:	5A
Alimentation SimNet:	10.8 - 15 VDC
Longueur maximum d'un câble dérivé:	6 m (20')
Longueur maximum de tous les câbles dérivés:	60 m (200')
Etanchéité câblage:	IP66
Température:	

BTS SYSTÈMES ÉLECTRONIQUES – Étude o	Session 2013	
U4.1 – Électronique – Documentation 13SEE4EL1		Page : BAN2/21

Section GPS

Récepteur: 14 canaux parallèles, code C/A, Filtre de Kalman 8 étages

Précision: Position (DGPS): 2 à 5 m RMS

Position (SDGPS): 3 à 7 m RMS
Position (GPS): 8 m RMS
Vitesse: 0.1 nœud

Cap: 1°

Filtre vitesse: 10 niveaux

Taux de mise

à jour: Intervalle 1 seconde, typique

Résistance

dynamique: Vélocité: 600 km/h

Accélération: 10 m / s²

Antenne GPS RS5640 Antenne DGPS MGL-3

Type: Quadrifilaire Helix Patch et H-field

Dimensions: L:230 mm H:75 mm

Ø:38 mm P:127 mm

Poids: 150 g (0.33 lbs) 600 g (1.3 lbs)

Environnement: -35°C à +75°C, humidité relative: 95%

Fixation: sur filetage 1" 14 (standard US)

Câble: RG58 10 m (standard), RG223 15 m (option), max. 30 m RG213

Section traceur

Systeme carto-

graphique: C-MAP NT+

Présentation: Carte semi dual - deux cartes à échelle et niveaux de détails

spécifiques

Mémoire interne: Enregistrement dynamique avec capacité de combinaison

jusqu'à

35,000 marques ou waypoints

10,000 waypoints avec nom (25 caractères)

50,000 points de tracés 50,000 sections de lignes

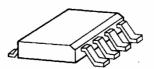
1,000 routes

BTS SYSTÈMES ÉLECTRONIQUES – Étude d'un Système Technique		Session 2013
U4.1 – Électronique – Documentation	13SEE4EL1	Page : BAN3/21

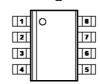
Silicon Bipolar MMIC 5 GHz Active Double Balanced Mixer/IF Amp

Technical Data

IAM-81008

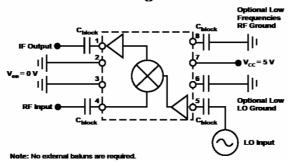

Features

- RF-IF Conversion Gain From 0.05-5 GHz
- IF Conversion Gain From DC to 1 GHz
- Low Power Dissipation: 65 mW at V_{cc} = 5 V Typical
- Single Polarity Bias Supply: V_{CC} = 4 to 8 V
- Load-insensitive Performance
- Conversion Gain Flat Over Temperature
- Low LO Power Requirements:
 -5 dBm Typical
- Low Cost Plastic Surface Mount Package


Typical applications include frequency down conversion, modulation, demodulation and phase detection. Markets include fiber-optics, GPS satelite navigation, mobile radio, and battery powered communications receivers.

The IAM series of Gilbert multiplier-based frequency converters is fabricated using HP's 10 GHz, f_T, 25 GHz f_{MAX} ISOSATTM-I silicon bipolar process. This process uses nitride self alignment, submicrometer lithography, trench isolation, ion implantation, gold metallization and polyimide intermetal dielectric and scratch protection to achieve excellent performance, uniformity and reliability.

Plastic SO-8 Package


Pin Configuration

Description

The IAM-81008 is a complete low power consumption, double balanced active mixer housed in a miniature low cost plastic surface mount package. It is designed for narrow or wide bandwidth commercial and industrial applications having RF inputs up to 5 GHz. Operation at RF and LO frequencies less than 50 MHz can be achieved using optional external capacitors to ground. The IAM-81008 is particularly well suited for applications that require load-insensitive conversion and good spurious signal suppression with minimum LO and bias power consumption.

Typical Biasing Configuration and Functional Block Diagram

BTS SYSTÈMES ÉLECTRONIQUES – Étude d'un Système Technique		Session 2013
U4.1 – Électronique – Documentation	13SEE4EL1	Page : BAN4/21

IAM-81008 Absolute Maximum Ratings

Parameter Absolute Maximum	
Device Voltage	10 V
Power Dissipation ^{2,3}	300 mW
RF Input Power	+14 dBm
LO Input Power	+14 dBm
Junction Temperature	150°C
Storage Temperature	−65 to 150°C

Thermal Resistance:	
$\theta_{jc} = 80^{\circ} \text{C/W}$	

Notes

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25^{\circ}C$.
- 3. Derate at 4.4 mW/°C for $T_C > 82^{\circ} C$.

IAM-81008 Part Number Ordering Information

Part Number	Devices Per Reel	Reel Size
IAM-81008-TR1	1000	7"

For more information, see "Tape and Reel Packaging for Semmiconductor Devices".

IAM-81008 Electrical Specifications $^{[1]},\,T_{_A}=25^{\circ}C$

Symbol	Parameters and Test Conditions: $V_{cc} = 5 \text{ V}$, $Z_0 = 50 \Omega$, $LO = -5 \text{ dBm}$, $RF = -20 \text{ dBm}$		Units	Min.	Тур.	Max.
$G_{\mathbb{C}}$	Conversion Gain	RF = 2 GHz, LO = 1.75 GHz	dΒ	6.0	8.5	10
F _{3 dB} RF	RF Bandwidth (G _C 3 dB Down)	IF = 250 MHz	GHz		3.5	
F _{3 dB} IF	IF Bandwidth (G _C 3 dB Down)	LO = 2 GHz	GHz		0.6	
P _{1 dB}	IF Output Power at 1 dB Gain Compression	RF = 2 GHz, LO = 1.75 GHz	dBm		-6	
IP ₃	IF Output Third Order Intercept Point	RF = 2 GHz, $LO = 1.75 GHz$	dBm		3	
NF	SSB Noise Figure	RF = 2 GHz, LO = 1.75 GHz	dB		17	
	RF Port VSWR	f = 0.05 to 3.5 GHz			1.5:1	
VSWR	LO Port VSWR	f = 0.05 to 3.5 GHz			2.0:1	
	IF Port VSWR	f < 1 GHz			1.5:1	
RFif	RF Feedthrough at IF Port	RF = 2 GHz, LO = 1.75 GHz	dBc		-25	
LOif	LO Leakage at IF Port	LO = 1.75 GHz	dBm		-25	
LO _{rf}	LO Leakage at RF Port	LO = 1.75 GHz	dBm		-30	
Icc	Supply Current		mA	10	13	16

Note:

1. The recommended operating voltage range for this device is 4 to 8 V. Typical performance as a function of voltage is on the following page.

BTS SYSTÈMES ÉLECTRONIQUES – Étude o	Session 2013	
U4.1 – Électronique – Documentation	13SEE4EL1	Page : BAN5/21

Philips Semiconductors Product specification

High performance low power mixer FM IF system

NE/SA615

DESCRIPTION

The NE/SA615 is a high performance monolithic low-power FM IF system incorporating a mixer/oscillator, two limiting intermediate frequency amplifiers, quadrature detector, muting, logarithmic received signal strength indicator (RSSI), and voltage regulator. The NE/SA615 combines the functions of Signetics' NE602 and NE604A, but features a higher mixer input intercept point, higher IF bandwidth (25MHz) and temperature compensated RSSI and limiters permitting higher performance application. The NE/SA615 is available in 20-lead dual-in-line plastic, 20-lead SOL (surface-mounted miniature package) and 20-lead SSOP (shrink small outline package).

The NE/SA605 and NE/SA615 are functionally the same device types. The difference between the two devices lies in the guaranteed specifications. The NE/SA615 has a higher I_{CC}, lower input third order intercept point, lower conversion mixer gain, lower limiter gain, lower AM rejection, lower SINAD, higher THD, and higher RSSI error than the NE/SA615. Both the NE/SA605 and NE/SA615 devices will meet the EIA specifications for AMPS and TACS cellular radio applications.

For additional technical information please refer to application notes AN1994, 1995 and 1996, which include example application diagrams, a complete overview of the product, and artwork for reference.

FEATURES

- Low power consumption: 5.7mA typical at 6V
- Mixer input to >500MHz
- Mixer conversion power gain of 13dB at 45MHz
- Mixer noise figure of 4.6dB at 45MHz
- XTAL oscillator effective to 150MHz (L.C. oscillator to 1GHz local oscillator can be injected)
- 102dB of IF Amp/Limiter gain
- 25MHz limiter small signal bandwidth
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a dynamic range in excess of 90dB
- Two audio outputs muted and unmuted
- Low external component count; suitable for crystal/ceramic/LC filters

PIN CONFIGURATION

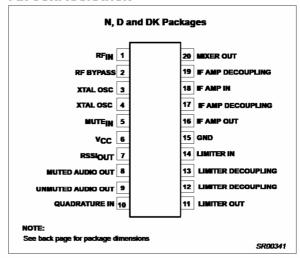


Figure 1. Pin Configuration

- Excellent sensitivity: 0.22μV into 50Ω matching network for 12dB SINAD (Signal to Noise and Distortion ratio) for 1kHz tone with RF at 45MHz and IF at 455kHz
- SA615 meets cellular radio specifications
- ESD hardened

APPLICATIONS

- Cellular radio FM IF
- High performance communications receivers
- Single conversion VHF/UHF receivers
- SCA receivers
- RF level meter
- Spectrum analyzer
- Instrumentation
- FSK and ASK data receivers
- Log amps
- Wideband low current amplification

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG #
20-Pin Plastic Dual In-Line Package (DIP)	0 to +70°C	NE615N	SOT146-1
20-Pin Plastic Dual In-Line Package (DIP)	-40 to +85°C	SA615N	SOT146-1
20-Pin Plastic Small Outline Large (SOL) package	0 to +70°C	NE615D	SOT108-1
20-Pin Plastic Small Outline Large (SOL) package	-40 to +85°C	SA615D	SOT108-1
20-Pin Plastic Shrink Small Outline Package (SSOP)	0 to +70°C	NE615DK	SOT266-1
20-Pin Plastic Shrink Small Outline Package (SSOP)	-40 to +85°C	SA615DK	SOT266-1

1992 Nov 3 6–46 853–1402 08109

BTS SYSTÈMES ÉLECTRONIQUES – Étude d'un Système Technique		Session 2013
U4.1 – Électronique – Documentation	13SEE4EL1	Page : BAN6/21

Philips Semiconductors Product specification

High performance low power mixer FM IF system

NE/SA615

BLOCK DIAGRAM

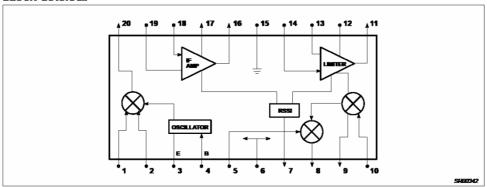


Figure 2. Block Diagram

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
Vcc	Single supply voltage	9	V
TSTG	Storage temperature range	-65 to +150	℃
TA	Operating ambient temperature range NE615	0 to +70	°C
	SA615	-40 to +85	°C
9 _{TV}	Thermal impedance D package N package SSOP package	90 75 117	"C/W

DC ELECTRICAL CHARACTERISTICS

 $V_{CC} = +6V$, $T_A = 25^{\circ}C$; unless otherwise stated.

				LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS		NE/SA615		UNITS
			MEN	TYP	MAX	
Vcc	Power supply voltage range		4.5		0.8	v
lcc	DC current drain			5.7	7.4	mA
	Mute switch input threshold (ON)		1.7			v
	(OFF)				1.0	v

CIRCUIT DESCRIPTION

The NE/SA615 is an IF signal processing system suitable for second IF or single conversion systems with input frequency as high as 1GHz. The bandwidth of the IF amplifier is about 40MHz, with 39.7dB(v) of gain from a 50Ω source. The bandwidth of the limiter is about 28MHz with about 62.5dB(v) of gain from a 50Ω source.

However, the gain/bandwidth distribution is optimized for 455kHz, $1.5 \mathrm{k}\Omega$ source applications. The overall system is well-suited to battery operation as well as high performance and high quality products of all types.

BTS SYSTÈMES ÉLECTRONIQUES – Étude d'un Système Technique		Session 2013
U4.1 – Électronique – Documentation	13SEE4EL1	Page : BAN7/21

Philips Semiconductors Product specification

High performance low power mixer FM IF system

NE/SA615

AC ELECTRICAL CHARACTERISTICS

 $T_A = 25^{\circ}C$; $V_{CC} = +6V$, unless otherwise stated. RF frequency = 45MHz + 14.5dBV RF input step—up; IF frequency = 455kHz; R17 = 5.1k; RF level = -45dBm; FM modulation = 1kHz with \pm 8kHz peak deviation. Audio output with C-message weighted filter and de-emphasis capacitor. Test circuit Figure 3. The parameters listed below are tested using automatic test equipment to assure consistent electrical characteristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

			LIMITS		_	
SYMBOL	. PARAMETER	TEST CONDITIONS		NE/SA615	MAX Mi- Mi- Mi- Mi- Mi- Mi- Mi- Mi- Mi- Mi	UNITS
			MIN	TYP	MAX	7
Mixer/Osc	section (ext LO = 300mV)	•				
f _{IN}	Input signal frequency			500		MHz
fosc	Crystal oscillator frequency			150		MHz
	Noise figure at 45MHz			5.0		dB
	Third-order input intercept point	f1 = 45.00; f2 = 45.06MHz		-12		dBm
	Conversion power gain	Matched 14.5dBV step-up	8.0	13		dB
		50Ω source		-1.7		dB
	RF input resistance	Single-ended input	3.0	4.7		kΩ
	RF input capacitance			3.5	4.0	pF
	Mixer output resistance	(Pin 20)	1.25	1.50		kΩ
IF section						
	IF amp gain	50Ω source		39.7		dB
	Limiter gain	50Ω source		62.5		dB
	Input limiting -3dB, R ₁₇ = 5.1k	Test at Pin 18		-109		dBm
	AM rejection	80% AM 1kHz	25	33	43	dB
	Audio level, R ₁₀ = 100k	15nF de-emphasis	60	150	260	mV _{RM}
	Unmuted audio level, R ₁₁ = 100k	150pF de-emphasis		530		m∨
	SINAD sensitivity	RF level -118dB		12		dB
THD	Total harmonic distortion		-30	-42		dB
S/N	Signal-to-noise ratio	No modulation for noise		68		dB
	IF RSSI output, $R_9 = 100k\Omega^1$	IF level = -118dBm	0	160	800	mV
		IF level = -68dBm	1.7	2.5	3.3	V
		IF level = -18dBm	3.6	4.8	5.8	V
	RSSI range	R ₉ = 100kΩ Pin 16		80		dB
	RSSI accuracy	R ₉ = 100kΩ Pin 16		<u>+</u> 2		dB
	IF input impedance		1.40	1.6		kΩ
	IF output impedance		0.85	1.0		kΩ
	Limiter intput impedance		1.40	1.6		kΩ
	Unmuted audio output resistance			58		kΩ
	Muted audio output resistance			58		kΩ
RF/IF sect	tion (int LO)	-		-	-	_
	Unmuted audio level	4.5V = V _{CC} , RF level = -27dBm		450		mV _{RM}
	System RSSI output	4.5V = V _{CC} , RF level = -27dBm		4.3		V

NOTE:

BTS SYSTÈMES ÉLECTRONIQUES – Étude d'un Système Technique		Session 2013
U4.1 – Électronique – Documentation	13SEE4EL1	Page : BAN8/21

The generator source impedance is 50Ω, but the NE/SA605 input impedance at Pin 18 is 1500Ω. As a result, IF level refers to the actual signal that enters the NE/SA605 input (Pin 8) which is about 21dB less than the "available power" at the generator.

DATA SHEET

BIPOLAR DIGITAL INTEGRATED CIRCUITS $\mu PB1506GV$, $\mu PB1507GV$

3GHz INPUT DIVIDE BY 256, 128, 64 PRESCALER IC FOR ANALOG DBS TUNERS

The μ PB1506GV and μ PB1507GV are 3.0 GHz input, high division silicon prescaler ICs for analog DBS tuner applications. These ICs divide-by-256, 128 and 64 contribute to produce analog DBS tuners with kit-use of 17 K series DTS controller or standard CMOS PLL synthesizer IC. The μ PB1506GV/ μ PB1507GV are shrink package versions of the μ PB586G/588G or μ PB1505GR so that these smaller packages contribute to reduce the mounting space replacing from conventional ICs.

The μ PB1506GV and μ PB1507GV are manufactured using NEC's high fr NESATTMIV silicon bipolar process. This process uses silicon nitride passivation film and gold electrodes. These materials can protect chip surface from external pollution and prevent corrosion/migration. Thus, these ICs have excellent performance, uniformity and reliability.

FEATURES

High toggle frequency : fin = 0.5 GHz to 3.0 GHz
 High-density surface mounting : 8-pin plastic SSOP (175 mil)

Low current consumption : 5 V, 19 mA
 Selectable high division : ±256, ±128, ±64

- Pin connection variation : μPB1506GV and μPB1507GV

APPLICATION

These ICs can use as a prescaler between local oscillator and PLL frequency synthesizer included modulus prescaler. For example, following application can be chosen;

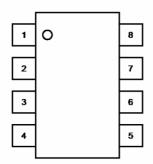
- Analog DBS tuner's synthesizer
- · Analog CATV converter synthesizer

ORDERING INFORMATION

PART NUMBER	PACKAGE	MARKING	SUPPLYING FORM
μPB1506GV-E1	8-pin plastic	1506	Embossed tape 8 mm wide. Pin 1 is in tape pull-out
μPB1507GV-E1	SSOP (175 mil)	1507	direction. 1 000 p/reel.

Remarks To order evaluation samples, please contact your local NEC sales office.

(Part number for sample order: μPB1506GV, μPB1507GV)


Caution: Electro-static sensitive devices

Document No. P10767EJ3V0DS00 (3rd edition)
Date Published January 1998 N CP(K)
Printed in Japan

© NEC Corporation 1996

BTS SYSTÈMES ÉLECTRONIQUES – Étude d'un Système Technique		Session 2013
U4.1 – Électronique – Documentation	13SEE4EL1	Page : BAN9/21

PIN CONNECTION (Top View)

Pin NO.	μPB1506GV	μPB1507GV
1	SW1	IN
2	IN	Vcc
3	ĪN	SW1
4	GND	OUT
5	NC	GND
6	SW2	SW2
7	ОИТ	NC
8	Vcc	ĪN

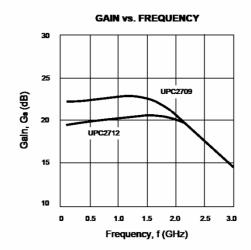
PIN EXPLANATION

	Applied	Pin		F	£				Pin	no.
Pin name	voltage V	voltage V		Funk	lions	and expla	anauon		<i>µ</i> РВ1506GV	µРВ1507GV
IN	_	2.9	Signal inpu	•	•		•	ed to signal C cut.	2	1
ĪN		2.9	Signal input bypass pin. This pin must be equipped with bypass capacitor (e.g. 1 000 pF) to minimize ground impedance.					3	8	
GND	0		formed as	Ground pin. Ground pattern on the board should be formed as wide as possible to minimize ground impedance.					4	5
SW1	H/L	_	ı	Divide ratio input pin. The ratio can be determined by following applied level to these pins.				1	3	
			[SV	V 2			
						Н	L			
SW2				SW1	н	÷64	÷128		6	6
			[L	÷128	÷256			
			These pins (e.g. 1 000		•	• •		s capacitor nce.		
Vcc	4.5 to 5.5	_	bypass car	Power supply pin. This pin must be equipped with bypass capacitor (e.g. 10 000 pF) to minimize ground impedance.					8	2
ОИТ	_	2.6 to 4.7	Divided fre emitter follo CMOS inpo	ower out	put T	his pin c	an be co	esigned as nnected to	7	4
NC	_	_	Non conne	ction pin	. This	pin mus	t be ope	nned.	5	7

BTS SYSTÈMES ÉLECTRONIQUES – Étude d'un Système Technique		Session 2013
U4.1 – Électronique – Documentation	13SEE4EL1	Page : BAN10/21

UPC2709T, UPC2712T

2.5 GHz SILICON MMIC WIDE-BAND AMPLIFIER


FEATURES

- WIDE FREQUENCY RESPONSE: 2.5 GHz
- HIGH GAIN: 23 dB (UPC2709T)
- SATURATED OUTPUT POWER: +11.5 dBm (UPC2709T)
- INTERNAL CURRENT REGULATION MINIMIZES GAIN CHANGE OVER TEMPERATURE
- 5 V SINGLE SUPPLY VOLTAGE
- SUPER SMALL PACKAGE
- TAPE AND REEL PACKAGING OPTION AVAILABLE

DESCRIPTION

NEC's UPC2709T and UPC2712T are Silicon Monolithic integrated circuits manufactured using the NESAT III process. These devices are suitable as buffer amplifiers for wide-band applications. They are designed for low cost gain stages in cellular radios, GPS receivers, DBS tuners, PCN, and test/measurement equipment.

NEC's stringent quality assurance and test procedures ensure the highest reliability and performance.

ELECTRICAL CHARACTERISTICS (TA = 25°C, f = 1 GHz, Vcc = 5 V)

	PART NUMBER PACKAGE OUTLINE			UPC2709 T06	Т	'	JPC2712 [*] T06	Т
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	ТҮР	MAX	MIN	TYP	MAX
lcc	Circuit Current (no signal)	mA	19	25	32	9	12	15
Gs	Small Signal Gain	dB	21	23	26.5	18	20	23.5
fu	Upper Limit Operating Frequency (The gain at fu is 3 dB down from the gain at 0.1 GHz)	GHz	2.0	2.3		2.2	2.6	
ΔGs	Gain Flatness, f = 0.1 ~ 1.8 GHz f = 0.1 ~ 2.0 GHz	dB		±1.0			±0.8	
PSAT	Saturated Output Power	dBm	9	11.5		0	3	
P1dB	Output Power at 1 dB Compression Point	dBm		7.5			-2.5	
NF	Noise Figure	dB		5	6.5		4.5	6
RLIN	Input Return Loss	dB	7	10		9	12	
RLout	Output Return Loss	dB	7	10		10	13	
ISOL	Isolation	dB	26	31		28	33	
ΔGт	Gain -Temperature Coefficient	dB/°C		-0.002			-0.003	
Rтн	Thermal Resistance (Junction to Ambient)	°C/W			200			200

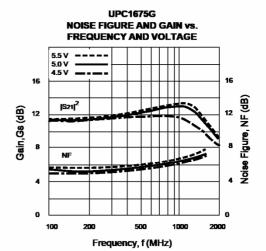
The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Date Published: June 28, 2005

BTS SYSTÈMES ÉLECTRONIQUES – Étude o	d'un Système Technique	Session 2013
U4.1 – Électronique – Documentation	13SEE4EL1	Page : BAN11/21

1.9 GHz BANDWIDTH GENERAL PURPOSE SILICON MMIC AMPLIFIER

UPC1675G


FEATURES

- WIDE BANDWIDTH: 1900 MHz at 3 dB Point
- HIGH ISOLATION
- SINGLE POWER SUPPLY: Vcc = 5 V
- INPUT/OUTPUT MATCHED TO 50 Ω
- AVAILABLE IN TAPE AND REEL

DESCRIPTION

The UPC1675G is a silicon monolithic integrated circuit designed for wide-band amplifiers covering the HF to UHF bands. This device is available in a surface mount package.

NEC's stringent quality assurance and test procedures ensure the highest reliability and performance.

ELECTRICAL CHARACTERISTICS (TA = 25° C, $V\infty = 5$ V, f = 500 MHz)

PART NUMBER PACKAGE OUTLINE			UPC1675G 39		
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	TYP	MAX
lcc	Supply Current	mА	12	17	22
Gs	Small Signal Gain	dB	10	12	14
PSAT	Saturated Output Power	dBm	2	4	
BW ¹	Bandwidth	MHz	1600	1900	
NF	Noise Figure	dB		5.5	7
RLIN	Input Return Loss	dB	9	12	
RLOUT	Output Return Loss	dB	8	11	
ISOL	Isolation	dB	21	24.5	

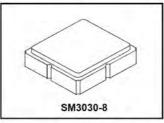
Note:

1. Gain is 3 dB down from gain at 100 MHz.

. California Eastern Laboratories

BTS SYSTÈMES ÉLECTRONIQUES – Étude o	Session 2013	
U4.1 – Électronique – Documentation	13SEE4EL1	Page : BAN12/21

- RF Filter for GPS Receiver
 Surface-mount 3.0 x 3.0 mm Package
 Complies with Directive 2002/95/EC (RoHS)



Absolute Maximum Ratings

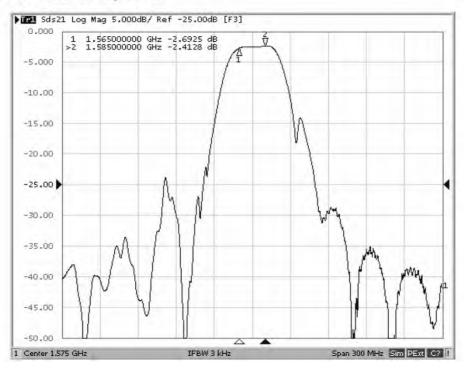
Rating	Value	Units
Input Power Level	10	dBm
DC Voltage on any Non-ground Terminal	3	V
Operating Temperature Range	-40 to +85	°C
Storage Temperature Range in Tape and Reel	-40 to +85	°C
Maximum Soldering Profile, 5 cycles/ 10 seconds maximum	265	°C

SF1186B-4

1575 MHz **SAW Filter**

Electrical Characteristics

Characteristic	Sym	Notes	Min	Тур	Max	Units	
Center Frequency	fc			1575		MHz	
Insertion Loss, 1565 - 1585 MHz	IL.			2.7	4.5	dB	
Amplitude Ripple, 1565 - 1585 MHz				0.4	1.5	dB	
Attenuation, 0 dB Reference:	- Jan 1						
0 to 1000 MHz			32	34		1	
1000 to 1435 MHz			32	34.5		1	
1435 to 1525 MHz			22	24		1	
1525 to 1540 MHz			7	21		1	
1610 to 1625 MHz			7	16		1 40	
1625 to 1715 MHz			22	25.5		dB	
1715 to 1785 MHz	1 1 1 1		34	39		1	
1785 to 2100 MHz			30	34			
2100 to 2200 MHz			25	26.5		1	
2200 to 2500 MHz			27	34		1	
2500 to 4000 MHz		1	18	32			
Source Impedance, Unbalanced	Z _S			50		0	
Load Impedance, Balanced	ZL			50		Ω	
Case Style		SM3030-8 3.0 x 3.0 mm Nominal Footprint					


Case Style	SM3030-8 3.0 x 3.0 mm Nominal Footprint
Lid Symbolization (Y=year, WW=week, S=shift) dot=pin 1 indicator	905, YWWS
Standard Reel Quantity Reel Size 7 Inch	500 Pieces/Reel
Reel Size 13 Inch	3000 Pieces/Reel

BTS SYSTÈMES ÉLECTRONIQUES – Étude d	l'un Système Technique	Session 2013
U4.1 – Électronique – Documentation	13SEE4EL1	Page : BAN13/21

Filter Wideband Response

Filter Passband Response

www.RFM.com E-mail: info@rfm.com ©2009-2010 by RF Monolithics, Inc.

Page 2 of 4 SF1186B-4 7/21/10

BTS SYSTÈMES ÉLECTRONIQUES – Étude o	Session 2013	
U4.1 – Électronique – Documentation	13SEE4EL1	Page : BAN14/21

High speed CAN transceiver

TJA1050

FEATURES

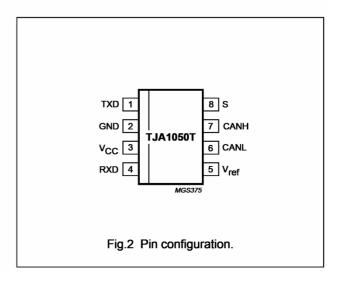
- Fully compatible with the "ISO 11898" standard
- High speed (up to 1 Mbaud)
- Very low ElectroMagnetic Emission (EME)
- Differential receiver with wide common-mode range for high ElectroMagnetic Immunity (EMI)
- An unpowered node does not disturb the bus lines
- Transmit Data (TXD) dominant time-out function
- · Silent mode in which the transmitter is disabled
- Bus pins protected against transients in an automotive environment
- Input levels compatible with 3.3 V and 5 V devices
- · Thermally protected
- · Short-circuit proof to battery and to ground
- · At least 110 nodes can be connected.

GENERAL DESCRIPTION

The TJA1050 is the interface between the Controller Area Network (CAN) protocol controller and the physical bus. The device provides differential transmit capability to the bus and differential receive capability to the CAN controller.

The TJA1050 is the third Philips high-speed CAN transceiver after the PCA82C250 and the PCA82C251. The most important differences are:

- Much lower electromagnetic emission due to optimal matching of the output signals CANH and CANL
- Improved behaviour in case of an unpowered node
- · No standby mode.


This makes the TJA1050 eminently suitable for use in nodes that are in a power-down situation in partially powered networks.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	supply voltage		4.75	5.25	٧
V _{CANH}	DC voltage at pin CANH	0 < V _{CC} < 5.25 V; no time limit	-27	+40	٧
V _{CANL}	DC voltage at pin CANL	0 < V _{CC} < 5.25 V; no time limit	-27	+40	٧
V _{i(dif)(bus)}	differential bus input voltage	dominant	1.5	3	٧
t _{PD(TXD-RXD)}	propagation delay TXD to RXD	V _S = 0 V; see Fig.7	_	250	ns
T _{vj}	virtual junction temperature		-4 0	+150	°C

PINNING

SYMBOL	PIN	DESCRIPTION
TXD	1	transmit data input; reads in data from the CAN controller to the bus line drivers
GND	2	ground
V _{CC}	3	supply voltage
RXD	4	receive data output; reads out data from the bus lines to the CAN controller
V _{ref}	5	reference voltage output
CANL	6	LOW-level CAN bus line
CANH	7	HIGH-level CAN bus line
S	8	select input for high-speed mode or silent mode

BTS SYSTÈMES ÉLECTRONIQUES – Étude o	Session 2013	
U4.1 – Électronique – Documentation	13SEE4EL1	Page : BAN15/21

FUNCTIONAL DESCRIPTION

The TJA1050 is the interface between the CAN protocol controller and the physical bus. It is primarily intended for high-speed automotive applications using baud rates from 60 kbaud up to 1 Mbaud. It provides differential transmit capability to the bus and differential receiver capability to the CAN protocol controller. It is fully compatible to the "ISO 11898" standard.

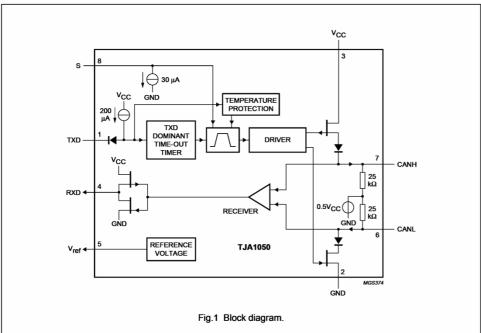
A current-limiting circuit protects the transmitter output stage from damage caused by accidental short-circuit to either positive or negative supply voltage, although power dissipation increases during this fault condition.

A thermal protection circuit protects the IC from damage by switching off the transmitter if the junction temperature exceeds a value of approximately 165 °C. Because the transmitter dissipates most of the power, the power dissipation and temperature of the IC is reduced. All other IC functions continue to operate. The transmitter off-state resets when pin TXD goes HIGH. The thermal protection circuit is particularly needed when a bus line short-circuits.

The pins CANH and CANL are protected from automotive electrical transients (according to "ISO 7637", see Fig.4).

Control pin S allows two operating modes to be selected: high-speed mode or silent mode.

The high-speed mode is the normal operating mode and is selected by connecting pin S to ground. It is the default mode if pin S is not connected. However, to ensure EMI performance in applications using only the high-speed mode, it is recommended that pin S is connected to ground.


In the silent mode, the transmitter is disabled. All other IC functions continue to operate. The silent mode is selected by connecting pin S to $V_{\rm CC}$ and can be used to prevent network communication from being blocked, due to a CAN controller which is out of control.

A 'TXD dominant time-out' timer circuit prevents the bus lines being driven to a permanent dominant state (blocking all network communication) if pin TXD is forced permanently LOW by a hardware and/or software application failure. The timer is triggered by a negative edge on pin TXD. If the duration of the LOW-level on pin TXD exceeds the internal timer value, the transmitter is disabled, driving the bus into a recessive state. The timer is reset by a positive edge on pin TXD.

Table 1 Function table of the CAN transceiver; X = don't care

V _{cc}	TXD	s	CANH	CANL	BUS STATE	RXD
4.75 V to 5.25 V	LOW	LOW (or floating)	HIGH	LOW	dominant	LOW
4.75 V to 5.25 V	Х	HIGH	0.5V _{CC}	0.5V _{CC}	recessive	HIGH
4.75 V to 5.25 V	HIGH (or floating)	Х	0.5V _{CC}	0.5V _{CC}	recessive	HIGH
<2 V (not powered)	Х	Х	0 V < V _{CANH} < V _{CC}	0 V < V _{CANL} < V _{CC}	recessive	Х
2 V < V _{CC} < 4.75 V	>2 V	Х	0 V < V _{CANH} < V _{CC}	0 V < V _{CANL} < V _{CC}	recessive	Х

BLOCK DIAGRAM

BTS SYSTÈMES ÉLECTRONIQUES – Étude o	Session 2013	
U4.1 – Électronique – Documentation	13SEE4EL1	Page : BAN16/21

High speed CAN transceiver

TJA1050

CHARACTERISTICS

 V_{CC} = 4.75 V to 5.25 V; T_{vj} = -40 °C to +150 °C; R_L = 60 Ω unless specified otherwise; all voltages are referenced to GND (pin 2); positive currents flow into the IC; see notes 1 and 2.

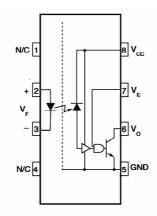
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT			
Supply (pin V _c	Supply (pin V _{CC})								
Icc	supply current	dominant; V _{TXD} = 0 V	25	50	75	mA			
		recessive; V _{TXD} = V _{CC}	2.5	5	10	mA			
Transmitter da	ta input (pin TXD)		•	•	•				
V _{IH}	HIGH-level input voltage	output recessive	2.0	Ī-	V _{CC} + 0.3	V			
V _{IL}	LOW-level input voltage	output dominant	-0.3	_	+0.8	V			
I _{IH}	HIGH-level input current	$V_{TXD} = V_{CC}$	-5	0	+5	μА			
I _{IL}	LOW-level input current	V _{TXD} = 0 V	-100	-200	-300	μА			
C _i	input capacitance	not tested	_	5	10	pF			
Mode select in	iput (pin S)								
V _{IH}	HIGH-level input voltage	silent mode	2.0	<u> </u>	V _{CC} + 0.3	V			
V _{IL}	LOW-level input voltage	high-speed mode	-0.3	-	+0.8	v			
I _{IH}	HIGH-level input current	V _S = 2 V	20	30	50	μА			
I _{IL}	LOW-level input current	V _S = 0.8 V	15	30	45	μА			
Receiver data output (pin RXD)									
I _{OH}	HIGH-level output current	$V_{RXD} = 0.7V_{CC}$	-2	–6	-15	mA			
I _{OL}	LOW-level output current	V _{RXD} = 0.45 V	2	8.5	20	mA			
Reference volt	tage output (pin V _{ref})								
V _{ref}	reference output voltage	-50 μA < I _{Vref} < +50 μA	0.45V _{CC}	0.5V _{CC}	0.55V _{CC}	V			
Bus lines (pins	s CANH and CANL)								
V _{o(reces)(CANH)}	recessive bus voltage at pin CANH	V _{TXD} = V _{CC} ; no load	2.0	2.5	3.0	V			
V _{o(reces)(CANL)}	recessive bus voltage at pin CANL	V _{TXD} = V _{CC} ; no load	2.0	2.5	3.0	V			
I _{o(reces)(CANH)}	recessive output current at pin CANH	-27 V < V _{CANH} < +32 V; 0 V < V _{CC} < 5.25 V	-2.0	-	+2.5	mA			
I _{o(reces)(CANL)}	recessive output current at pin CANL	-27 V < V _{CANL} < +32 V; 0 V < V _{CC} < 5.25 V	-2.0	-	+2.5	mA			
$V_{o(dom)(CANH)}$	dominant output voltage at pin CANH	V _{TXD} = 0 V	3.0	3.6	4.25	V			
V _{o(dom)(CANL)}	dominant output voltage at pin CANL	$V_{TXD} = 0 V$	0.5	1.4	1.75	V			
V _{i(dif)(bus)}	differential bus input voltage (V _{CANH} – V _{CANL})	V_{TXD} = 0 V; dominant; 42.5 Ω < R _L < 60 Ω	1.5	2.25	3.0	V			
		V _{TXD} = V _{CC} ; recessive; no load	-50	0	+50	mV			

BTS SYSTÈMES ÉLECTRONIQUES – Étude o	Session 2013				
U4.1 – Électronique – Documentation	U4.1 – Électronique – Documentation 13SEE4EL1				

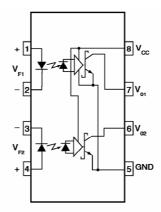
HCPL0600, HCPL0601, HCPL0611, HCPL0637, HCPL0638, HCPL0639 High Speed-10 MBit/s Logic Gate Optocouplers

Single Channel: HCPL0600, HCPL0601, HCPL0611 Dual Channel: HCPL0637, HCPL0638, HCPL0639

Features


- Compact SO8 package
- Very high speed-10 MBit/s
- Superior CMR
- Logic gate output
- Strobable output (single channel devices)
- Wired OR-open collector
- U.L. recognized (File # E90700)
- IEC60747-5-2 approved (VDE option)
 HCPL0600, HCPL0601, HCPL0611 only

Applications


- Ground loop elimination
- LSTTL to TTL, LSTTL or 5-volt CMOS
- Line receiver, data transmission
- Data multiplexing
- Switching power supplies
- Pulse transformer replacement
- Computer-peripheral interface

Description

The HCPL06XX optocouplers consist of an AlGaAS LED, optically coupled to a very high speed integrated photo-detector logic gate with a strobable output (single channel devices). The devices are housed in a compact small-outline package. This output features an open collector, thereby permitting wired OR outputs. The HCPL0600, HCPL0601 and HCPL0611 output consists of bipolar transistors on a bipolar process while the HCPL0637, HCPL0638, and HCPL0639 output consists of bipolar transistors on a CMOS process for reduced power consumption. The coupled parameters are guaranteed over the temperature range of -40°C to +85°C. An internal noise shield provides superior common mode rejection.

Single-channel circuit drawing (HCPL0600, HCPL0601 and HCPL0611)

Dual-channel circuit drawing (HCPL0637, HCPL0638 and HCPL0639)

Truth Table (Positive Logic)

Input	Enable	Output
Н	Н	L
L	Н	Н
Н	L	Н
L	L	Н
H*	NC*	L*
L*	NC*	H*

^{*}Dual channel devices or single channel devices with pin 7 not connected. A $0.1\mu F$ bypass capacitor must be connected between pins 8 and 5. (See note 1)

BTS SYSTÈMES ÉLECTRONIQUES – Étude o	Session 2013	
U4.1 – Électronique – Documentation	13SEE4EL1	Page : BAN18/21

Electrical Characteristics ($T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ unless otherwise specified.) Individual Component Characteristics

Symbol	Parameter	1	Test Condit	Min.	Тур.*	Max.	Unit	
EMITTER		•						
V _F	Input Forward Voltage	I _F = 10mA					1.8	V
				T _A = 25°C			1.75	
B _{VR}	Input Reverse Breakdown Voltage	I _R = 10μA						V
ΔVF/ΔΤΑ	Input Diode Temperature Coefficient	I _F = 10mA			-1.5		mV/°C	
DETECTOR	1	•						
I _{CCH}	High Level Supply Current	I _F = 0mA,					10	mA
		$V_{CC} = 5.5V$		Dual Channel			15	
I _{CCL}	Low Level Supply Current	' -		Single Channel			13	mA
		$V_{CC} = 5.5V$	V _{CC} = 5.5V				21	
I _{EL}	Low Level Enable Current	$V_{CC} = 5.5V, V$	V _{CC} = 5.5V, V _E = 0.5V Single Channel				-1.6	mA
I _{EH}	High Level Enable Current	$V_{CC} = 5.5V, V$	E = 2.0V	Single Channel			-1.6	mA
V _{EH}	High Level Enable Voltage	$V_{CC} = 5.5V, I_F$	= 10mA	Single Channel	2.0			V
V _{EL}	Low Level Enable Voltage	$V_{CC} = 5.5V, I_{F}$	= 10mA ⁽²⁾	Single Channel			0.8	٧

Typical Performance Curves (HCPL0600, HCPL0601 and HCPL0611 only)

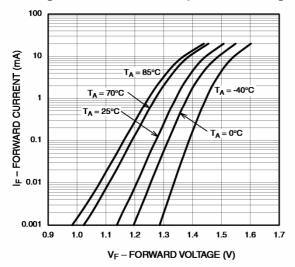
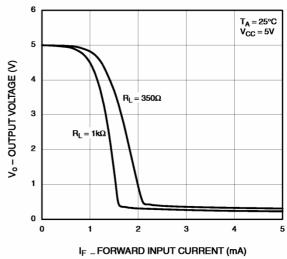



Fig. 2 Output Voltage vs. Forward Current

BTS SYSTÈMES ÉLECTRONIQUES – Étude d	Session 2013				
U4.1 – Électronique – Documentation	U4.1 – Électronique – Documentation 13SEE4EL1				

Figure 29. UART Timing in Mode 1

T89C51CC01: UART

SM2 REN TB8 RB8 TI

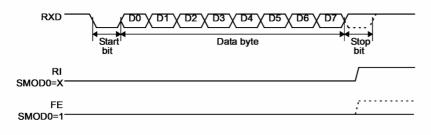


Figure 30. UART Timing in Modes 2 and 3

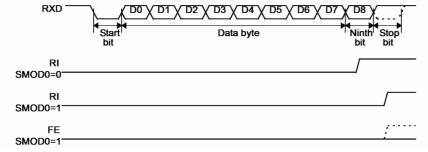


Table 30. SCON Register SCON (S:98h) Serial Control Register

Table 34. PCON Register PCON (S:87h) Power Control Register

owel Col	illi oi negisti	EI .									
7	6	5	4	3	2	1	0	Bit Number	Bit Mnemonic	Description	
SMOD1 Bit	SMOD0 Bit	-	POF	GF1	GF0	PD	IDL	7	FE	Framing Error bit (SMOD0=1) Clear to reset the error state, not cleared by a valid stop bit. Set by hardware when an invalid stop bit is detected.	
Number	Mnemonic	Description							SM0	Serial port Mode bit 0 (SMOD0=0) Refer to SM1 for serial port mode selection.	
7	SMOD1	Serial port I Set to select		rate in mode	1, 2 or 3.					Serial port Mode bit 1 SM0SM1Mode Baud Rate	
6	SMOD0			SCON registe ON register.	r.			6	SM1	0 0 Shift RegisterF _{XTAI} /12 (or F _{XTAI} /6 in mode X2) 0 1 8-bit UARTVariable 1 0 9-bit UARTF _{XTAI} /64 or F _{XTAI} /32 1 1 9-bit UARTVariable	
5	-			oit is indetermi	nate. Do not	set this bit.		5	SM2	Serial port Mode 2 bit/Multiprocessor Communication Enable bit Clear to disable multiprocessor communication feature. Set to enable multiprocessor communication feature in mode 2 and 3.	
4	POF	Power-Off Flag Clear to recognize next reset type. Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by software.				n also be set	4	REN	Reception Enable bit Clear to disable serial reception. Set to enable serial reception.		
3	GF1	Cleared by u	General-purpose Flag Cleared by user for general-purpose usage. Set by user for general-purpose usage.					3	TB8	Transmitter Bit 8/Ninth bit to transmit in modes 2 and 3 Clear to transmit a logic 0 in the 9th bit. Set to transmit a logic 1 in the 9th bit.	
2	GF0	General-purpose Flag Cleared by user for general-purpose usage. Set by user for general-purpose usage.					2	RB8	Receiver Bit 8/Ninth bit received in modes 2 and 3 Cleared by hardware if 9th bit received is a logic 0. Set by hardware if 9th bit received is a logic 1.		
1	PD	Power-Down	n mode bit	n reset occurs	i.			1	Transmit Interrupt flag TI Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0 or at the stop bit in the other modes.		
0	IDL	Idle mode b Clear by hard Set to enter i	dware when i	nterrupt or res	et occurs.			0	RI	Receive Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0, see Figure 29. and Figure 30. in the other modes.	

BTS SYSTÈMES ÉLECTRONIQUES – Étude o	Session 2013	
U4.1 – Électronique – Documentation	13SEE4EL1	Page : BAN20/21

T89C51CC01: TIMER1

Mode 2 (8-bit Timer with Auto-Reload)

Mode 2 configures Timer 1 as an 8-bit Timer (TL1 register) that automatically reloads from TH1 register (see Figure 33). TL1 overflow sets TF1 flag in TCON register and reloads TL1 with the contents of TH1, which is preset by software. When the interrupt request is serviced, hardware clears TF1. The reload leaves TH1 unchanged. The next reload value may be changed at any time by writing it to TH1 register.

Figure 33. Timer/Counter x (x = 0 or 1) in Mode 2

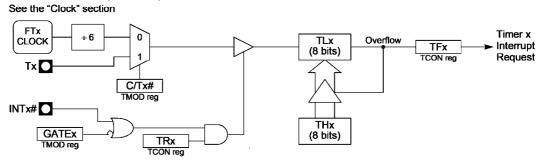


Table 36. TMOD Register
TMOD (S:89h)
Timer/Counter Mode Control Register

Table 35. TCON Register
TCON (S:88h)
Timer/Counter Control Register

GATE1 C/T1# GATE0 C/T0# M11 M01 M10 M00 Bit Bit Bit Numbe Description Timer 1 Overflow Flag
Cleared by hardware when processor vectors to interrupt routine. Timer 1 Gating Control Bit 7 TF1 GATE1 Clear to enable Timer 1 whenever TR1 bit is set.
Set to enable Timer 1 only while INT1# pin is high and TR1 bit is set Set by hardware on Timer/Counter overflow, when Timer 1 register overflows Timer 1 Run Control Bit Timer 1 Counter/Timer Select Bit C/T1# Clear for Timer operation: Timer 1 counts the divided-down system clock.

Set for Counter operation: Timer 1 counts negative transitions on external pin T1 6 TR1 Clear to turn off Timer/Counter 1 Set to turn on Timer/Counter 1. M11 Timer 1 Mode Select Bits Timer 0 Overflow Flag 5 TF0 Cleared by hardware when processor vectors to interrupt routine.

Set by hardware on Timer/Counter overflow, when Timer 0 register overflows M11M01Operating mode 0 0Mode 0: 8-bit Timer/Counter (TH1) with 5-bit prescaler (TL1). 0 1Mode 1: 16-bit Timer/Counter Timer 0 Run Control Bit Clear to turn off Timer/Counter 0. Set to turn on Timer/Counter 0. M01 OMode 2: 8-bit auto-reload Timer/Counter (TL1)⁽¹⁾
1Mode 3: Timer 1 halted. Retains count TR0 Timer 0 Gating Control Bit Clear to enable Timer 0 whenever TR0 bit is set. Set to enable Timer/Counter 0 only while INT0# pin is high and TR0 bit is set. Interrupt 1 Edge Flag 3 3 IE1 Cleared by hardware when interrupt is processed if edge-triggered (see IT1). Set by hardware when external interrupt is detected on INT1# pin. Timer 0 Counter/Timer Select Bit Interrupt 1 Type Control Bit C/T0# 2 Clear for Timer operation: Timer 0 counts the divided-down system clock 2 IT1 Clear to select low level active (level triggered) for external interrupt 1 (INT1#). Set for Counter operation: Timer 0 counts negative transitions on external pin T0. Set to select falling edge active (edge triggered) for external interrupt 1 Timer 0 Mode Select Bit Interrupt 0 Edge Flag M10M00Operating mode
0 0Mode 0: 8-bit Timer/Counter (TH0) with 5-bit prescaler (TL0).
0 1Mode 1: 16-bit Timer/Counter. M10 Cleared by hardware when interrupt is processed if edge-triggered (see IT0). Set by hardware when external interrupt is detected on INT0# pin. IE0 1 0Mode 2: 8-bit auto-reload Timer/Counter (TL0)⁽²⁾
1 1Mode 3: TL0 is an 8-bit Timer/Counter
TH0 is an 8-bit Timer using Timer 1's TR0 and TF0 bits. Interrupt 0 Type Control Bit 0 0 Clear to select low level active (level triggered) for external interrupt 0 (INT0#). Set to select falling edge active (edge triggered) for external interrupt 0.

 Table 39. TH1 Register

 Table 40. TL1 Register

 TL1 (S:8Bh) Timer 1 Low Byte Register

 7
 6
 5
 4
 3
 2
 1
 0
 7
 6

	_	_	_	 _	_	_						
Bit Number	Bit Mnemonic	Description					Bit Number	Bit Mnemonic	Description			
7:0		High Byte of	f Timer 1.				7:0		Low Byte of	f Timer 1.		

BTS SYSTÈMES ÉLECTRONIQUES – Étude o	d'un Système Technique	Session 2013
U4.1 – Électronique – Documentation	13SEE4EL1	Page : BAN21/21