BREVET DE TECHNICIEN SUPERIEUR

ÉTUDE ET RÉALISATION D'OUTILLAGES DE MISE EN FORME DES MATÉRIAUX

SCIENCES PHYSIQUES

Durée 2 heures

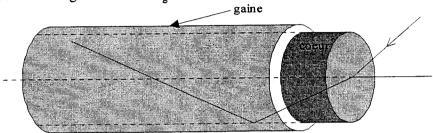
coefficient 2

Dès que le sujet vous est remis, assurez-vous qu'il est complet. Ce sujet comporte : 3 pages numérotées de 1/3 à 3/3.

La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l'appréciation des copies.

L'usage des instruments de calcul est autorisé.

Il n'existe aucun texte réglementaire interdisant à un candidat d'utiliser plusieurs calculatrices pendant une épreuve de l'examen. Ces calculatrices doivent respecter les normes prévues par les textes.

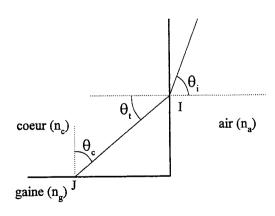

Sont autorisées toutes les calculatrices de poche, y compris les calculatrices programmables et alphanumériques à condition que leur fonctionnement soit autonome et qu'il ne soit pas fait usage d'imprimantes. Afin de limiter les appareils à un format raisonnable, leur surface de base ne doit pas dépasser 21 cm de long et 15 cm de large.

L'échange des calculatrices entre les candidats pendant les épreuves est interdit, de même que l'usage des notices fournies par les constructeurs.

I. Optique: utilisation des lois de la réflexion et de la réfraction (8 points)

les questions 1 et 2 de cet exercice ne nécessitent aucune connaissance relative aux fibres optiques. On y utilise uniquement les lois de la réflexion et de la réfraction.

La figure ci-dessous représente une fibre optique (dite à saut d'indice). Elle est constituée d'un coeur d'indice n_c entourée d'une gaine d'indice n_g


On se place à l'entrée de la fibre optique (dans l'air) et on considère un faisceau lumineux qui pénètre dans le coeur. Dans l'air, l'angle d'un rayon SI avec l'axe de la fibre est appelé θ_i (angle d'incidence).

Une première réfraction a lieu quand la lumière pénètre dans le coeur de la fibre, on passe de l'air d'indice n_a au coeur d'indice n_c.
On appelle θ_t l'angle que fait le rayon réfracté IJ avec l'axe de la fibre.

Quelle relation relie θ_i , θ_t , n_a et n_c ?

- 2. On désire qu'il y ait réflexion totale au niveau de la surface qui sépare le coeur et la gaine de la fibre.
- 2.1. On appelle θ_c l'angle que fait le rayon lumineux IJ avec la normale à la surface de séparation au point J. Quelle relation relie les angles θ_t et θ_c ?
- 2.2. On désire qu'il y ait réflexion totale au point J. Pour cela il faut que l'angle θ_c soit supérieur à une valeur θ_ℓ appelée angle limite. Établir la relation que doit vérifier l'angle θ_ℓ . On notera n_g l'indice de la gaine.

2.3. On donne les valeurs numériques des indices des différents milieux :

$$n_a = 1$$
 $n_c = 1,48$ $n_g = 1,46$

Calculer, en degrés, les valeurs numériques de

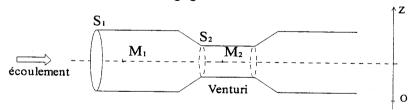
l'angle limite θ_{ℓ} ,

l'angle θ_t dans le cas où $\theta_c = \theta_\ell$,

l'angle θ_i dans le cas où θ_c = θ_ℓ , on appellera θ_m cette valeur.

- 2.4. Pour qu'il y ait réflexion totale à l'intérieur de la fibre, doit-on avoir $\theta_{i \ge} \theta_{m}$ ou $\theta_{i \le} \theta_{m}$? Les réponses non justifiées ne seront pas prises en compte.
- 3. Citer deux utilisations des fibres optiques.

II. Mécanique des fluides : mesures d'une vitesse d'écoulement (6 points)


Préliminaires:

Les unités utilisées sont celles du système international. La cote d'un point sur un axe vertical est notée z

Relation de Bernoulli : $p + \rho gz + \frac{1}{2}\rho v^2 = Cte$

Pour mesurer en régime stationnaire, la vitesse d'écoulement v_1 d'un fluide incompressible, de masse volumique ρ , dans une canalisation horizontale de section S_1 , on peut utiliser un tube de Venturi.

Cet appareil remplace un tronçon de canalisation. L'entrée et la sortie de l'appareil ont la même section S_1 que la canalisation. Le col a une section S_2 inférieure à S_1 . Deux capteurs de pression, placés l'un au niveau de l'entrée, l'autre au niveau du col, mesurent respectivement les pressions p_1 et p_2 . Les pertes de charges dans le Venturi sont négligées.

- 1. Donner la relation liant la vitesse v_1 du fluide dans la canalisation de section S_1 et la vitesse v_2 du fluide dans le col de section S_2 .
- 2. Les points M_1 et M_2 appartiennent à l'axe de la canalisation (voir schéma). Écrire la relation qui relie les grandeurs v_1 , p_1 relatives à M_1 , les grandeurs v_2 , p_2 relatives à M_2 et la masse volumique ρ du fluide.
- 3. On donne : $S_1 = 2 S_2$ et $\rho = 10^3 \text{ kg.m}^{-3}$.

Quelle est dans ce cas l'expression de v_1 en fonction de la différence des pressions p_1 et p_2 ?

4. on a mesuré : $\Delta p = p_1 - p_2 = 0.24 \times 10^5 \text{ Pa}$. Calculer v_1 .

III. Thermodynamique: transferts de chaleur (6 points)

On utilise un alliage léger pour fabriquer une poignée de porte de masse m = 125 g. L'alliage est introduit dans le moule à une température $\theta_1 = 720$ °C. La pièce est démoulée à une température $\theta_2 = 380$ °C. Un dispositif annexe de chauffage du moule évite un refroidissement trop rapide de l'alliage et permet l'invariance des conditions de fabrication.

1. Calculer l'énergie thermique que l'alliage cède au moule quand il passe de 720°C à 380°C. On suppose que cet alliage se comporte comme un alliage eutectique de température de solidification égale à $\theta_s = 580$ °C et que l'énergie cédée par l'alliage (W_a) est reçue par le moule (W_{th}).

Données:

capacité thermique massique de l'alliage solide : $c_s = 750 \text{ J.kg}^{-1}.\text{K}^{-1}$; capacité thermique massique de l'alliage liquide : $c_l = 780 \text{ J.kg}^{-1}.\text{K}^{-1}$; variation d'enthalpie massique de fusion l'alliage (ou chaleur latente de fusion de l'alliage) $\Delta H = 105 \text{ kJ.kg}^{-1}$.

- 2. Le moule reçoit de l'énergie de l'alliage et du dispositif annexe de chauffage. Il en cède au milieu extérieur essentiellement par rayonnement et par convection. Le flux thermique correspondant a pour valeur moyenne $\Phi_t = 1,3$ kW. Le cycle de moulage a une durée de 140 s.
- 2.1. Calculer l'énergie thermique perdue par le moule pendant un cycle de moulage.
- 2.2. Quelle puissante thermique faut-il prévoir pour le dispositif annexe de chauffage (cartouches chauffantes).