I - ELECTRICITE (12 points)

Une installation triphasée 220 V/380 V, 50 Hz consomme une puissance active $P_T = 12 \, kW$ et une puissance réactive $Q_T = 12 \, kVAR$.

- 1.a. Calculer le facteur de puissance cos φ de l'installation.
 - **b.** Calculer l'intensité I_T du courant dans l'installation.
- 2. On ajoute à l'installation trois batteries de condensateurs couplées en triangle. Chacune de ces batteries a une capacité $C=35~\mu F$.
 - a. Calculer la puissance réactive Q_c renvoyée par les condensateurs.
 - $\boldsymbol{b}.$ En déduire la nouvelle valeur du facteur de puissance cos ϕ ' de l'installation.
- c. Pourquoi procède-t-on à ce relèvement du facteur de puissance ?
- 3. Dans l'installation se trouve un moteur asynchrone triphasé comportant 10 pôles. En charge normale, il tourne à la vitesse n = 570 tr/min, en absorbant une puissance P = 3500 W. L'intensité du courant en ligne est I = 8 A.

La résistance entre deux phases du stator est $R=0.5~\Omega$. Les pertes fer du stator sont évaluées à 150 W; les pertes mécaniques sont également de 150 W.

Calculer:

- a. les pertes par effet Joule au stator;
- b. le glissement;
- c. les pertes par effet Joule au rotor;
- d. la puissance utile et le rendement de ce moteur.