
IY Session : **1999**

Durée : 2 h

Page 1 / 5

coefficient: 2

Partie 1 : Mécanique des fluides

Dans une cuve cylindrique, de diamètre $d_1 = 1,20$ m on prépare un mortier liquide en mélangeant eau, ciment et sable . L'agitation est réalisée grâce à un moteur d'entraînement et un système à palettes ..

On prépare 2 tonnes de mortier liquide de masse volumique : ρ = 1800 kg.m⁻³

- 1) Une fois le mélange terminé, on enlève le système d'agitation . Calculer la hauteur **h** du mortier dans la cuve à ce moment ?
- 2) On transporte ensuite le mortier au 2e étage d'un immeuble (altitude H=8 m) à l'aide d'une pompe et d'un tuyau de diamètre intérieur constant $d_2=8$ cm de longueur L=40 m et présentant $d_2=8$ cm de longueur $d_2=8$ cm de longueur $d_2=8$ cm de ces coudes équivaut pour les pertes de charge à une longueur supplémentaire de conduite de $d_2=8$ m. On désire que la cuve soit vidée en $d_2=8$ cm de longueur supplémentaire de conduite de $d_2=8$ m. On désire que la cuve soit vidée en $d_2=8$ cm de longueur supplémentaire de conduite de $d_2=8$ cm de longueur $d_2=8$
- 2-1) Calculer le débit volumique $\mathbf{q_V}$ ainsi que la vitesse $\mathbf{c_2}$ du mortier dans la conduite et $\mathbf{c_1}$ dans la cuve . Dans la suite, on pourra négliger $\mathbf{c_1}$ devant $\mathbf{c_2}$.
 - 2 2-2) Calculer le nombre de Reynolds old R pour la conduite, et en déduire le type d'écoulement .

On donne : la viscosité cinématique du mortier $v = 2,7 \cdot 10^{-3} \text{ m}^2.\text{s}^{-1}$

le nombre de Reynolds : $\mathcal{R} = \frac{\mathbf{c.d}}{\mathbf{v}}$

 λ coefficient de pertes de charge.

Pertes de charge **J** dans une conduite : $\mathbf{J} = -\frac{\lambda \cdot \mathbf{c}^2}{2 \cdot \mathbf{d}} \cdot \mathbf{L}$

Session : 1999

Durée : 2 h

Page 2 / 5

coefficient: 2

Types d'écoulement et expressions de λ .

$$\mathcal{R} \leq 2000$$
: écoulement laminaire $\lambda = \frac{64}{\wp}$

2000 < \mathcal{R} < 40000 : écoulement turbulent lisse $\lambda = 0.316.\mathcal{R}^{-0.25}$

Equation de BERNOULLI pour 1 kilogramme de fluide :

$$W_{12} + J_{12} = \frac{P_2 - P_1}{\rho} + \frac{1}{2}(c_2^2 - c_1^2) + g(z_2 - z_1)$$

Accélération de la pesanteur g = 9,8 m.s-2

- 2-3) Calculer les pertes de charge totales dans la conduite (en tenant compte des coudes) en J/kg de mortier .
 - 2-4) La sortie du tuyau se fait à la pression atmosphérique P₂ = P₁ = 10⁵ Pa

Calculer le travail $\bf W$ fourni par la pompe à un kg de mortier au début du transport . En déduire la puissance de la pompe si son rendement est de $\bf 90~\%$.

2-5) Vers la fin du transport , quand la cuve est presque vide, la puissance calculée précédemment est-elle suffisante?

On justifiera la réponse .

Session: 1999

Durée : 2 h

Page 3 / 5

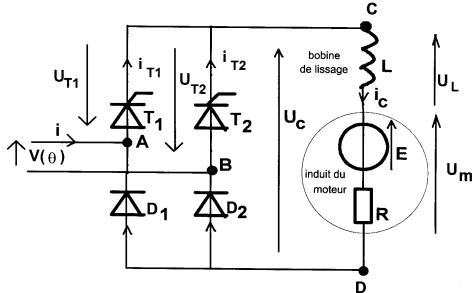
coefficient: 2

Partie 2: Electrotechnique

Commande d'un moteur par un pont mixte

On alimente l'induit d'un moteur à courant continu dont l'excitation est constante en série avec une bobine à travers un pont mixte : 2 thyristors et 2 diodes (considérés comme parfaits), à partir d'une source de tension alternative v(t) de valeur efficace V

et de fréquence f = 50 Hz.


$$V(t) = \hat{V} \sin \omega t$$
 ou avec $\theta = \omega t$: $V(\theta) = \hat{V} \sin \theta$

$$V(\theta) = \hat{V} \sin \theta$$

On appelle E la f.é.m. de l'induit du moteur et R sa résistance. (Cette f.é.m. est proportionnelle à la fréquence de rotation E = 0,12. n (avec E en Volt, n en tr.min⁻¹). $R = 2.0 \Omega$.

Le thyristor T_1 est amorcé à l'instant to angle de retard à l'amorçage $\alpha = \omega$.to Le thyristor T_2 est amorcé à l'instant to + T/2 (angle d'amorçage $\alpha + \pi$)

L'inductance L de la bobine est telle que l'on constate que le courant ic(t) dans la charge est $\underline{ininterrompu}$, son ondulation suffisamment faible pour qu'on puisse $\underline{considérer}$ $i_{\mathbb{C}}$ pratiquement constant et égal à sa valeur moyenne la

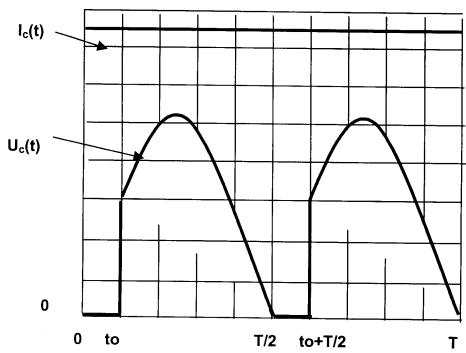
On a relevé les oscillogrammes :

de la tension redressée uc(t) aux bornes de la charge constituée par l'induit du moteur et la bobine de lissage

sensibilité de la voie : 20 V/div

de l'image de l'intensité du courant dans la charge ic(t) au moyen d'une sonde de courant de sensibilité 10 A / V

sensibilité de la voie : 20 mV/div


La base de temps est de 2 ms/div

Session: 1999

Durée : 2 h

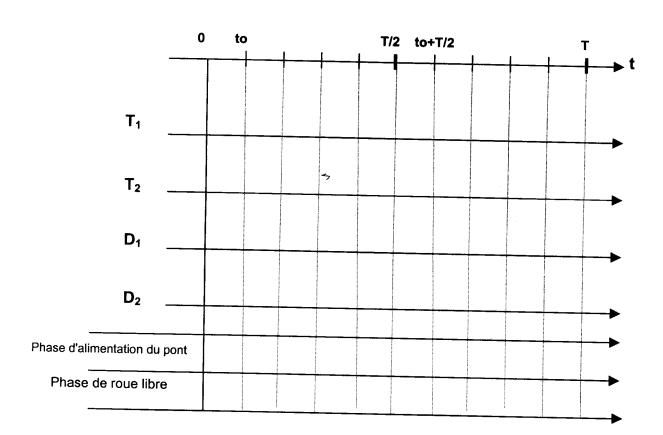
Page 4 / 5

coefficient : 2

- 1) Déduire des oscillogrammes
 - 1-1) la valeur numérique de l'intensité du courant dans la charge $i_c(t) = I_c$;
 - 1-2) l'amplitudes $\hat{\mathbf{U}}_{c}$ de la tension aux bornes de la charge puis $\hat{\mathbf{V}}_{,}$ celle de la tension délivrée par la source alternative ;
 - les valeurs numériques de la période T, de l'angle de retard à l'amorçage θ_0 , du retard à l'amorçage t_0 . (On montrera alors que l'angle de retard est $\alpha = \pi/5$).
 - 2-1) Quel type d'appareil choisiriez vous pour mesurer la valeur moyenne $\;\overline{\mathbf{U}}_{c}\;$ de $\mathbf{u}_{c}(t)$?
 - 2-2) Sachant que

2)

$$\overline{\mathbf{U}}_{\mathbf{c}} = \frac{2\hat{\mathbf{V}}}{\pi} \cdot \frac{(1 + \cos \theta)}{2}$$
, calculer $\overline{\mathbf{U}}_{\mathbf{c}}$


3) On rappelle que la valeur moyenne de $u_L(t)$: $\overline{\mathbf{U}}_L = 0$

Exprimer U_m en fonction de E , R et I_c . En déduire la valeur numérique de la f.é.m. E de l'induit du moteur et sa fréquence de rotation n (en tr/min).

4) Compléter le document réponse (page 5/5) en indiquant les intervalles de conduction de T_1 , T_2 , D_1 et D_2 .

Académie :	Session :		
Examen ou Concours			Série* :
Spécialité/option* :		Repère de l'épreuve :	
Épreuve/sous-épreuve :			· · · · · · · · · · · · · · · · · ·
NOM :			
(en majuscules, suivi s'il y a lieu, du nom d'épouse) Prénoms:		N° du candidat	
Né(e) le :			(le numéro est celui qui figure sur la convocation ou la liste d'appel)
Uniquement s'il sagit d'un examen.			
Repère: ROPHY	Session : 1999		Durée : 2 h
Page 5 / 5			= 333 , = 1,1
			coefficient :

Document réponse à remettre avec la copie

1 A

fas por