BREVET DE TECHNICIEN SUPERIEUR

PRODUCTIQUE MECANIQUE

E4: CONCEPTION DES OUTILLAGES

Sous-épreuve : U41 – Analyse et validation d'un outillage

Durée: 3 heures 30

coefficient: 2,5

Aucun document autorisé

Contenu du dossier :

Texte du sujet : Annexes :

pages 1/9 à 7/9 pages 8/9 à 9/9

Documents réponse :

DR1 - 1/1 et DR2 - 1/1

Cette sous-épreuve a pour objectif de valider les compétences :

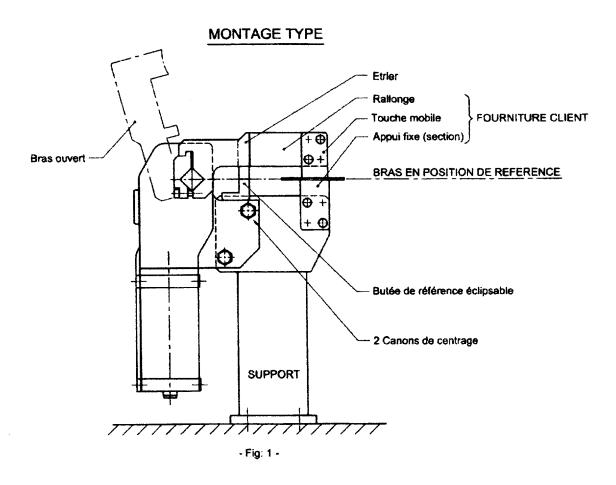
C21: analyser une solution d'outillage

C23: valider et/ou dimensionner tout ou partie d'une solution d'outillage

C24: améliorer une solution d'outillage

CALCULATRICE AUTORISEE

Sont autorisées toutes les calculatrices de poche, y compris les calculatrices programmables, alphanumériques ou à écran graphique à condition que leur fonctionnement soit autonome et qu'il ne soit pas fait usage d'imprimantes.


Le candidat n'utilise qu'une seule machine sur la table. Toutefois, si celle-ci vient à connaître une défaillance, il peut la remplacer par une autre.

Afin de prévenir les risques de fraude, sont interdits les échanges de machines entre les candidats, la consultation des notices fournies par les constructeurs ainsi que les échanges d'informations par l'intermédiaire des fonctions de transmission des calculatrices.

Tous les documents réponses (feuilles de copies et feuilles réponses du sujet) seront placés dans cette chemise de présentation et rendus à la fin de la sous-épreuve.

Présentation du contexte de l'étude

Les « SERRAGES CNOMO 2 » auront (voir DT1) pour fonction l'ablocage de 2 tôles dont l'épaisseur de l'ensemble peut varier dans une certaine fourchette. Cette fonction de serrage est réalisée à l'aide d'une rallonge, qui est une fourniture client, fixée sur un étrier monté d'origine (cf. figure 1).

Le réglage de la position de référence s'effectue à l'aide de butées, dont une éclipsable. Leur mise en contact définie cette position de référence.

Les « SERRAGES CNOMO 2 » à vérin pneumatique présenteront l'avantage de réaliser des maintiens en position, à effort constant, de tôles jusqu'à une épaisseur de 6mm.

Ce projet doit faire l'objet d'un dépôt de brevet de la part de la société conceptrice.

Dans le cadre d'une ingénierie simultanée et concourante, le technicien en préindustrialisation est invité, entre autre, à résoudre les deux problèmes techniques suivants :

 Pb1 : Peut-on serrer des pièces jusqu'à 6mm d'épaisseur avec effort de serrage constant. (partie A, environ 1H30)

• Pb2 : La rigidité de la pièce « INTERFACE » (DT3, repère 3) sera-t-elle suffisante au cours de son usinage pour garantir la cotation dimensionnelle et géométrique définie sur le document DT5. (partie B, environ 1H30)

A - Résolution du problème technique lié au serrage de tôles d'épaisseur variable

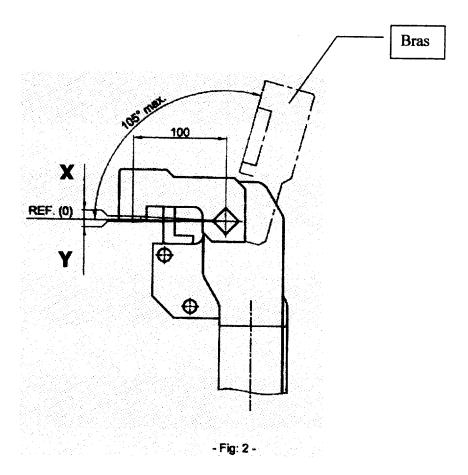
Pour valider le problème technique lié au serrage de tôles d'épaisseur variable, il est nécessaire de réaliser une simulation à l'aide d'un logiciel.

Pour cela, il nous faut :

- a Modéliser le mécanisme pour une exploitation logiciel
- b Calculer la poussée du vérin
- c Interpréter les résultats obtenus

Le schéma cinématique présenté sur le document réponse DR1 est composé de 5 classes d'équivalence. Sur les documents techniques DT3 sont précisés les numéros des pièces principales de ces classes d'équivalence.

<u>Ouestion A1</u> - A l'aide uniquement des documents techniques DT2 et DT3, compléter le document réponse DR1 en reportant dans les repères adéquats les numéros des classes d'équivalence.


Question A2 - Sur document réponse DR1, identifier la nature des liaisons référencées L1 à L7 sur le document réponse DR1. Exemple d'identification : « Liaison appui plan de normale $P\vec{z}$ ».

<u>Question A3</u> - Sur document réponse DR1, en fonction du mouvement du piston, indiquer le mouvement du levier.

Question A4 - Sur feuille de copie, calculer l'effort de poussée du vérin lorsqu'il est alimenté avec une pression de 0,6Mpa. Les dimensions seront mesurées sur le document DT3 2/2 coupe B - B.

La cinématique des « SERRAGES CNOMO 2 » est conçue de sorte que le couple de serrage, dont résulte la force de serrage, est uniquement exploitable dans une zone matérialisée sur la figure 2 par X et Y, placés de part et d'autre de la position de référence. Dans cette zone, la vitesse de rotation est minimale et constante afin d'accoster convenablement les éléments à serrer, le couple de serrage y est également constant (Les courbes, couple et vitesse, obtenues par simulation logicielle sont fournies sur le document DR2).

L'objectif est de vérifier que cette zone de serrage permette de serrer un empilage de tôles dont l'épaisseur peut varier de **6mm**. Cette valeur doit être définie à 100mm de l'axe de rotation du bras.

Question A5 - Sur feuille de copie, calculer la variation angulaire du bras nécessaire à un effort de serrage constant sur une épaisseur de 6mm à 100mm de l'axe de rotation.

<u>Question A6</u> - Sur document réponse DR2, représenter la plage correspondant à la variation angulaire déterminée à la question précédente.

Question A7 - Le serrage à effort constant de tôles d'épaisseur allant jusqu'à 6mm est-il validé ? Justifier sur feuille de copie.

<u>B - Résolution du problème technique lié à la rigidité de la pièce « INTERFACE »</u>

Le montage d'usinage servant à la mise en position et au maintien en position de l'« INTERFACE » en phase 20 est présenté par les documents techniques DT10 à DT12. L'objectif de l'étude est de vérifier que le bridage, qui entraîne nécessairement une déformation

de la pièce, n'empêche pas le respect des différentes spécifications du dessin de définition et notamment celle liée aux trous Ø8H7.

Question B1 - Sur feuille de copie, et à l'aide des documents techniques DT2 et DT3, préciser les éléments qui assurent la mise en position ainsi que le maintien en position des « PLAQUES », « PLAQUES DE FERMETURE » sur l'« INTERFACE ».

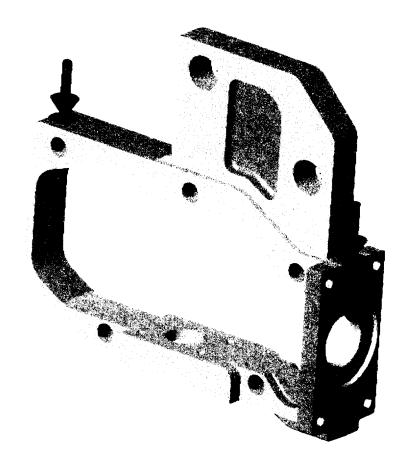
Question B2 - Sur feuille de copie, préciser ce que l'on peut conclure de la mise en position.

Question B3 - Sur feuille de copie, préciser la spécification géométrique, ainsi que tous ses éléments liés tels que les dimensions de référence, associée au positionnement des trous Ø8H7.

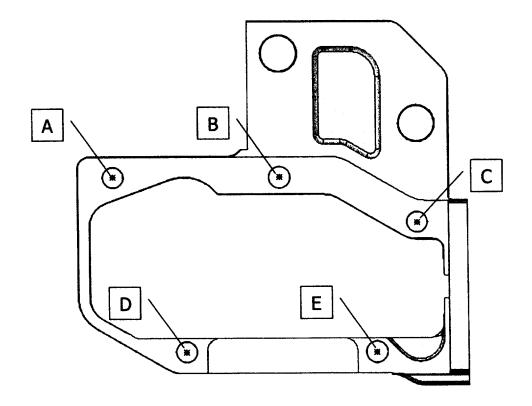
En fonction de l'effort tangentiel ergonomique maximal que l'on peut appliquer (cf. annexe 2) pour le serrage d'une vis, il est nécessaire de calculer l'effort résultant sur la pièce au niveau des deux brides de serrage (les configurations des deux ensembles de bridage sont identiques). Ces valeurs d'efforts à calculer sont exploitées ci-après dans le dossier pour une analyse de la déformée de la pièce à l'aide d'un logiciel de calcul par éléments finis.

Un « Modèle retenu sur la relation couple de serrage – effort presseur dans un système vis – écrou » est présenté en annexe 1 et sert de base aux calculs à réaliser.

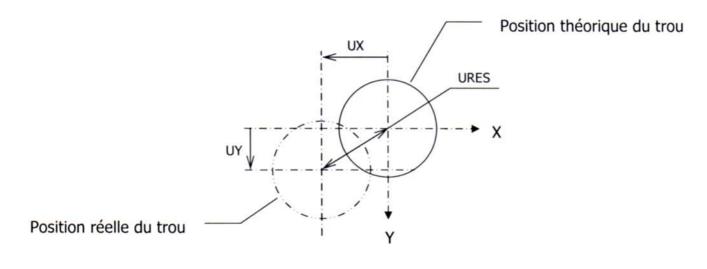
Hypothèses:

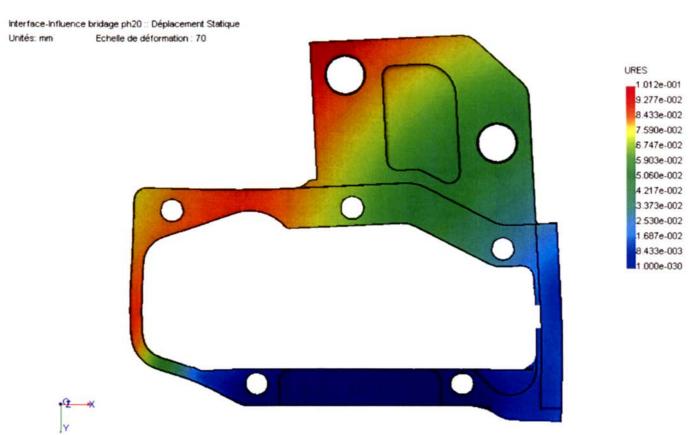

- facteur de frottement $\mu = \mu' = \tan \varphi = 0.1$
- Au niveau du frottement, on considère l'ensemble rondelle concave/rondelle convexe équivalent à un empilage de 2 rondelles plates

Question B4 - Sur feuille de copie, donner l'effort tangentiel ergonomique maximal applicable. Calculer le couple Cs résultant, en considérant que le point d'application de cet effort tangentiel est placé à 50 mm de l'axe de la vis.


Question B5 - Calculer le rayon de l'hélice moyenne de la vis, l'angle d'inclinaison de l'hélice moyenne, déterminer l'effort P appliqué à la bride.

Analyse de la déformée de la pièce à l'aide d'un logiciel de calcul par éléments finis


Schéma des zones d'application, sur la pièce, des efforts calculés P_D modélisants le bridage



Repérage des centres des trous

Déformée amplifiée de l' « INTERFACE » sous la contrainte modélisée du bridage

Tableau des résultats obtenus (en mm)

	Point A	Point B	Point C	Point D	Point E
UX	-0,03298	-0,02915	-0,01607	-0,00127	0,00815
UY	0,07605	0,06212	0,02367	0,00012	0,00030
URES	0,08289	0,06862	0,02861	0,00128	0,00816

Par hypothèse, il sera considéré que les déformations des surfaces de référence des spécifications géométriques associées aux trous sont négligeables.

<u>Question B7</u> - Sur feuille de copie, préciser si le porte-pièce convient. Expliquer la démarche permettant d'arriver à cette conclusion.

Question B8 - Sur feuille de copie, proposer une évolution du porte-pièce à l'aide d'un système **additionnel** qui permettrait, une amélioration notable de la déformation de l' « INTERFACE » sous les efforts de bridage. Au choix, effectuer un schéma technologique ou un croquis à main levée de la solution proposée.

U41 – Dossier sujet Page 7/9

ANNEXE 1

<u>Modèle retenu sur la relation couple de serrage – effort presseur</u> <u>dans un système vis – écrou</u>

Pour filetages à pas ISO et dans le cas d'un empilage de rondelles, on retient la formule suivante :

Cs = P x (r x
$$\frac{\tan \alpha + 1,156 \times \mu \times \cos \alpha}{1 - 1,156 \times \mu \times \sin \alpha} + n \times rp_{an} \times \mu'$$
)

r : rayon de l'hélice moyenne du filet en mm, pour un filetage ISO : $r = (d / 2) - 0,2706 \times pas$

 α : angle d'inclinaison de l'hélice moyenne avec $\tan \alpha = \frac{pas}{2 \times \pi \times r}$

 μ = tan ϕ , coefficient de frottement dans le filetage

 μ' = tan ϕ' , coefficient de frottement dans le pivot annulaire

n: nombre de contacts de surfaces (ex : si une vis avec une rondelle : n = 2)

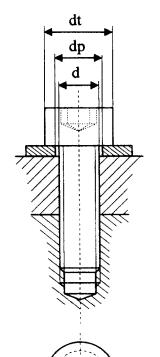
rpan: rayon du pivot annulaire en mm

Cs : couple de serrage en Nmm

P: effort de serrage en N

d pas S dt dp rpan 3 0,5 4,47 5,5 3,5 2,30 4 0,7 7,75 7 4,5 2,94 5 0,8 12,7 8,5 5,5 3,58 6 1 17,9 10 6,5 4,22 8 1,25 32,9 13 9 5,59 10 1,5 52,3 16 11 6,86 12 1,75 76,2 18 13 7,85 14 2 105 21 15 9,12 16 2 144 24 17 10,40						
3 0,5 4,47 5,5 3,5 2,30 4 0,7 7,75 7 4,5 2,94 5 0,8 12,7 8,5 5,5 3,58 6 1 17,9 10 6,5 4,22 8 1,25 32,9 13 9 5,59 10 1,5 52,3 16 11 6,86 12 1,75 76,2 18 13 7,85 14 2 105 21 15 9,12	d	pas	S	dt	dp	r pan
4 0,7 7,75 7 4,5 2,94 5 0,8 12,7 8,5 5,5 3,58 6 1 17,9 10 6,5 4,22 8 1,25 32,9 13 9 5,59 10 1,5 52,3 16 11 6,86 12 1,75 76,2 18 13 7,85 14 2 105 21 15 9,12	3		4,47	5,5	3,5	2,30
5 0,8 12,7 8,5 5,5 3,58 6 1 17,9 10 6,5 4,22 8 1,25 32,9 13 9 5,59 10 1,5 52,3 16 11 6,86 12 1,75 76,2 18 13 7,85 14 2 105 21 15 9,12	4		7,75	7		
6 1 17,9 10 6,5 4,22 8 1,25 32,9 13 9 5,59 10 1,5 52,3 16 11 6,86 12 1,75 76,2 18 13 7,85 14 2 105 21 15 9,12	5			8,5		
10 1,5 52,3 16 11 6,86 12 1,75 76,2 18 13 7,85 14 2 105 21 15 9,12	6	1				4,22
10 1,5 52,3 16 11 6,86 12 1,75 76,2 18 13 7,85 14 2 105 21 15 9,12	8	1,25				5,59
12 1,75 76,2 18 13 7,85 14 2 105 21 15 9,12	10			16	11	
14 2 105 21 15 9,12	12			18	13	
16 2 144 24 17 10,40	14	2		21	15	
	16	2	144	24	17	10,40

d : diamètre nominal de la vis en mm


S: surface du noyau en mm²


dt : diamètre de la tête de vis en mm

dp : diamètre du trou de passage en mm

rpan: rayon du pivot annulaire en mm

U41 – Dossier sujet

ANNEXE 2

Fiche technique NORELEM

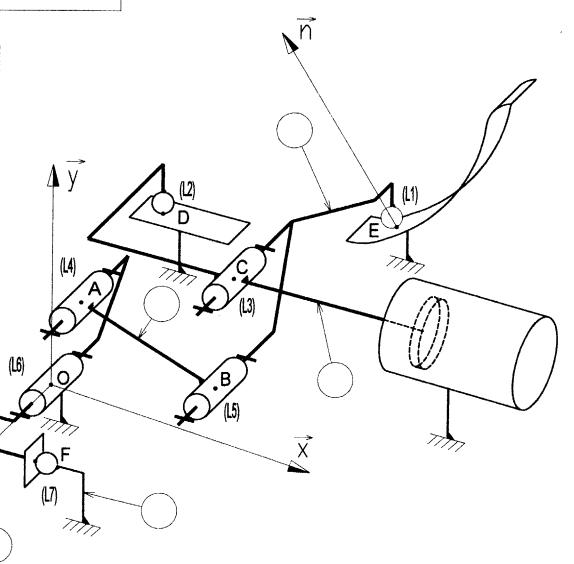
Eléments de manoeuvre

Couples et efforts tangentiels ergonomiques applicables

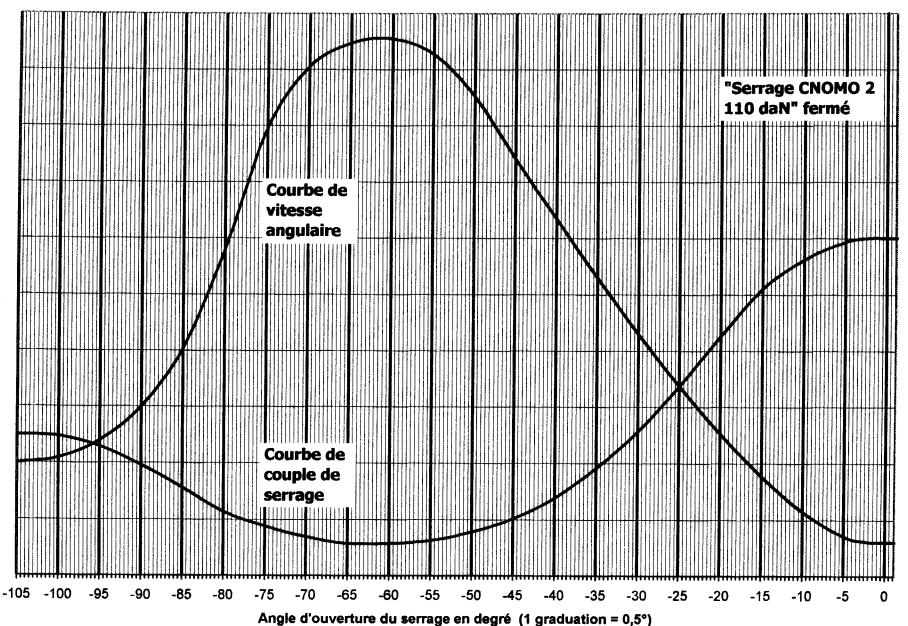
(Extrait de la documentation NORELEM : « Eléments standards pour montages mécaniques »)

•PRINCIPES ERGONOMETRIQUES:

Le tableau ci-dessous indique les valeurs à prendre en compte pour la manipulation de volants ou poignées, quelque soit la fréquence d'utilisation et les capacités physiques de l'utilisateur.


Elément Manœuvré	Schéma	Effort Maximal	
		Couple(m.daN)	Effort tangentiel(daN)
Bouton rotatif réglage continu ○ 20 à ○ 30 mm		0,015 m.daN	1,5 daN
Bouton rotatif réglage continu © 30 à © 80 mm		0,04 à 0,1 m.daN	3 daN
Manettes, Manivelles manoeuvrées à la main	OF T	0,1 m.daN	3 daN
Volants manoeuvrés d'une main ⊘ 200 mm		0,1 m.daN	3 daN

Il peut être considéré que les couples et efforts tangentiels ergonomiques maximaux applicables pour un serrage effectué avec une clé plate, clé à pipe, clé pour six pans creux,..., sont assimilés à ceux relatifs aux manœuvres effectuées à l'aide de manettes et manivelles.


SERRAGE PNEUMATIQUE CNOMO 2

(position fermée)

Liaison	Nom et caractéristiques
L1	
L2	
L3	
L4	
L5	
L6	
L7	

COURBES COUPLE / VITESSE ANGULAIRE SERRAGE PNEUMATIQUE CNOMO 2 110 daN

BREVET DE TECHNICIEN SUPERIEUR

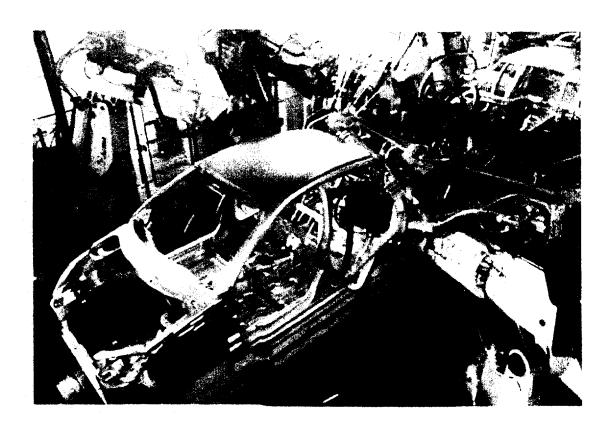
PRODUCTIQUE MECANIQUE

E4: CONCEPTION DES OUTILLAGES

Sous-épreuve : U41 - Analyse et validation d'un outillage

Sous-épreuve : U42 - Conception d'un outillage

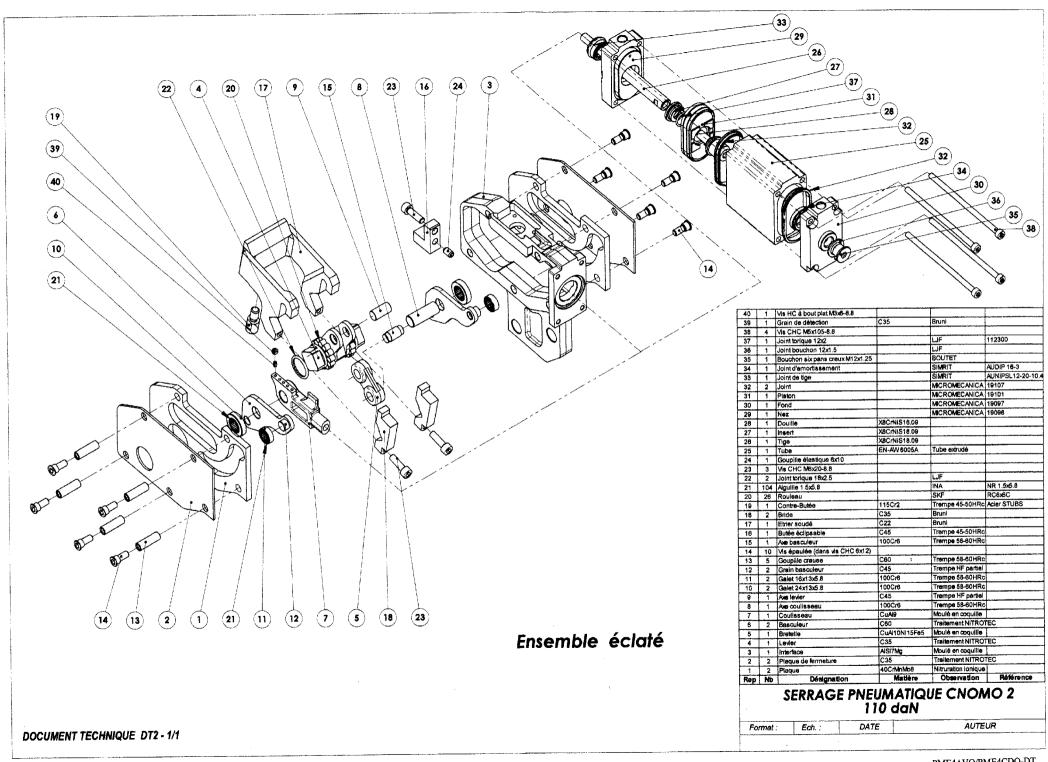
DOSSIER TECHNIQUE

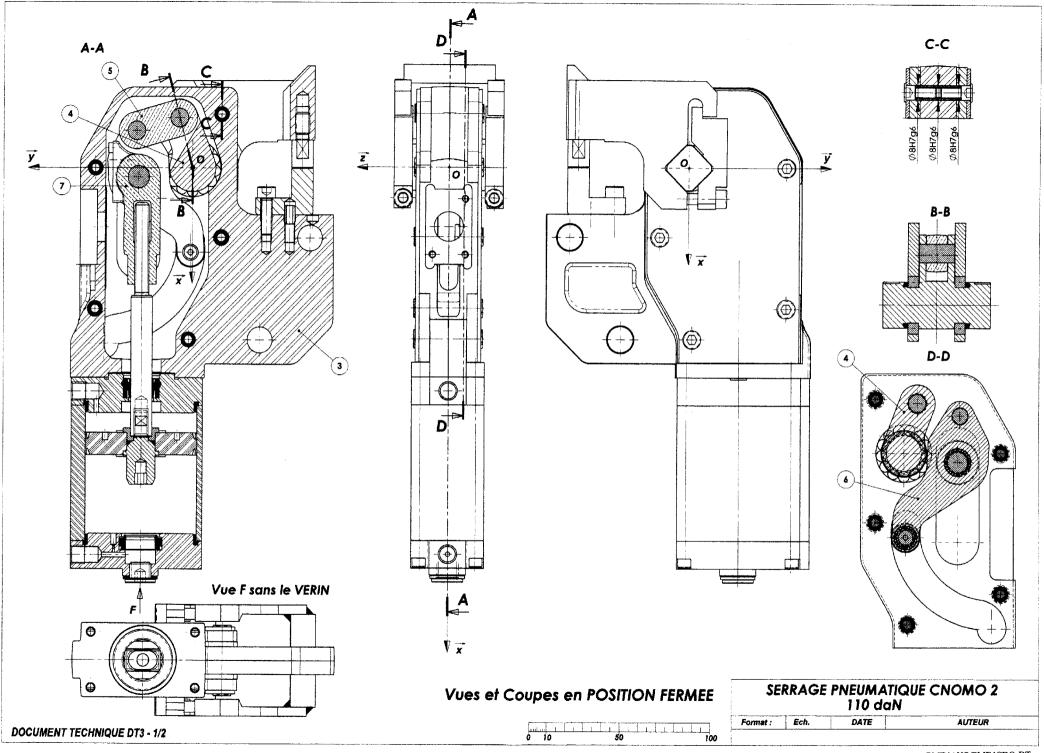

Contenu du dossier :

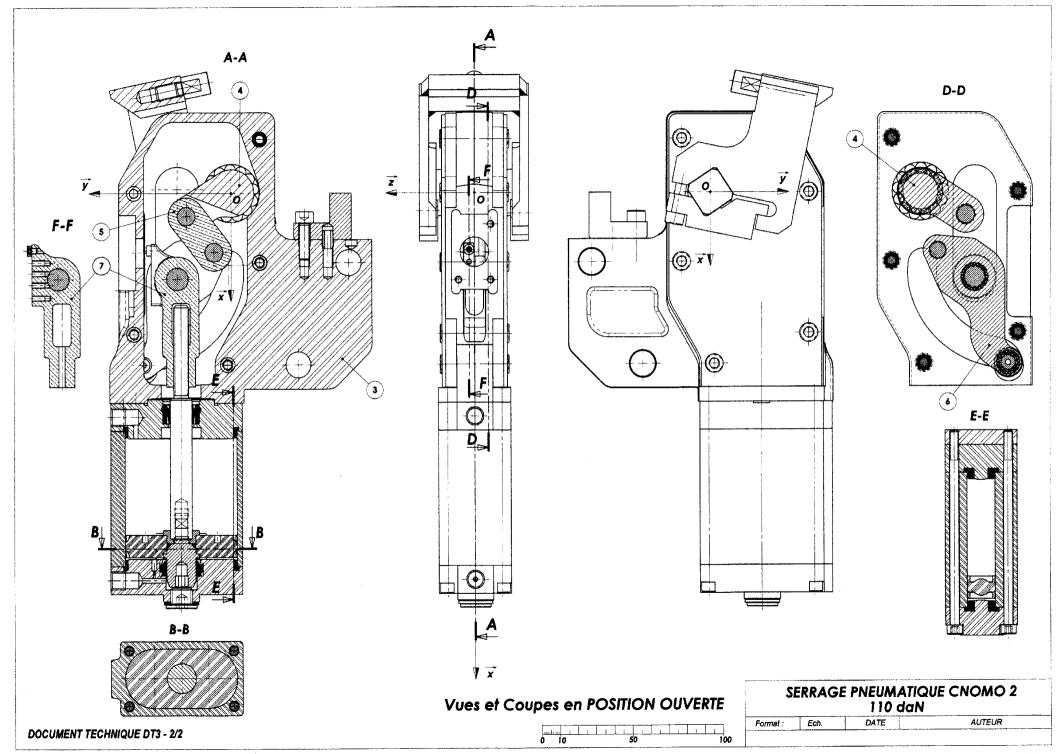
DT	Intitulé	Page(s)
DT1	Présentation du contexte de l'étude	DT1 - 1/1
DT2	Eclaté du « SERRAGE PNEUMATIQUE CNOMO 2 110daN»	DT2 - 1/1
ртз	Vues et coupes du « SERRAGE PNEUMATIQUE CNOMO 2	DT3 - 1/2 et 2/2
DT4	110daN», positions O/F Dessin définition de l' « Interface » – Brut	DT4 - 1/1
DT5	Dessin de définition de l' « Interface » – Usiné	DT5 - 1/1
DT6	Projet de gamme	DT6 - 1/1
DT7	Caractéristiques du CU GSP 3S 4 axes	DT7 - 1/2 et 2/2
DT8	Contrat de phase nº 10	DT8 - 1/2 et 2/2
рт9	Contrat de phase nº 20	DT9 - 1/2 et 2/2
DT10	Vues en perspective de la modélisation 3D du montage	DT10 - 1/1
DT11	d'usinage phase 20 Vues 3D schématiques du montage d'usinage phase 20 : mise	DT11 - 1/1
DT12	en situation sur centre d'usinage Dessin d'ensemble avec nomenclature du montage d'usinage phase 20, détail du dispositif de bridage	DT12 - 1/2 et 2/2

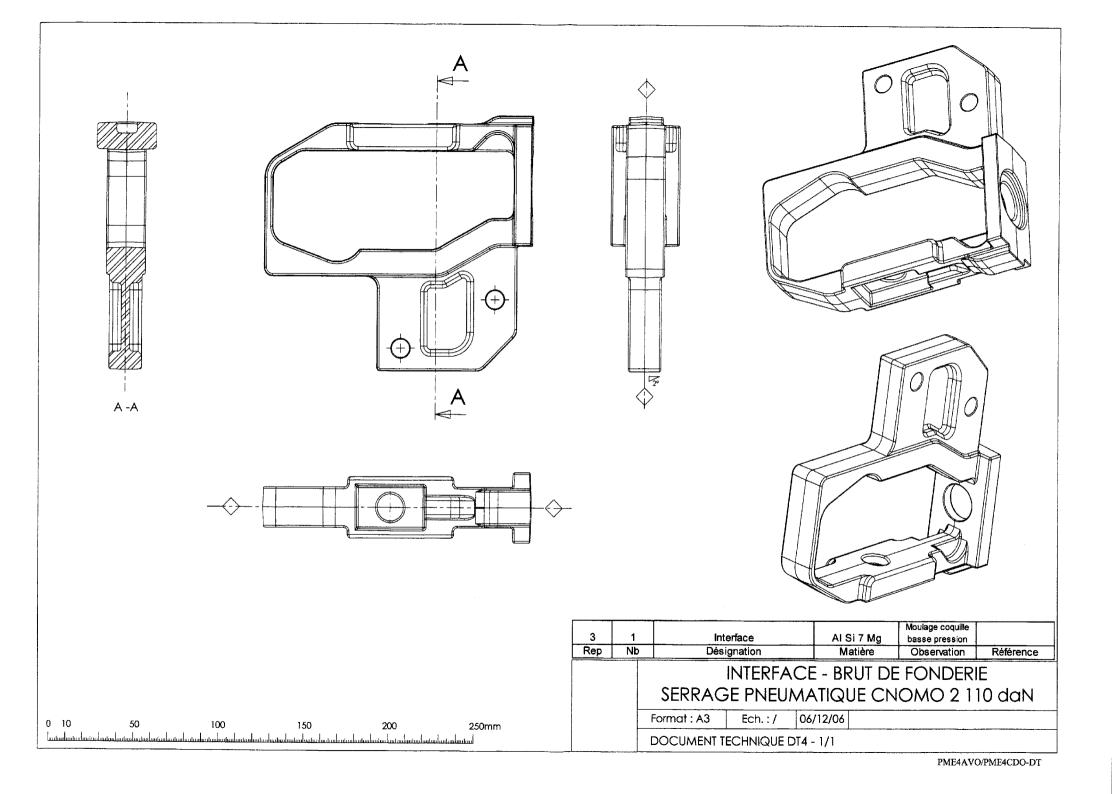
Présentation du contexte de l'étude

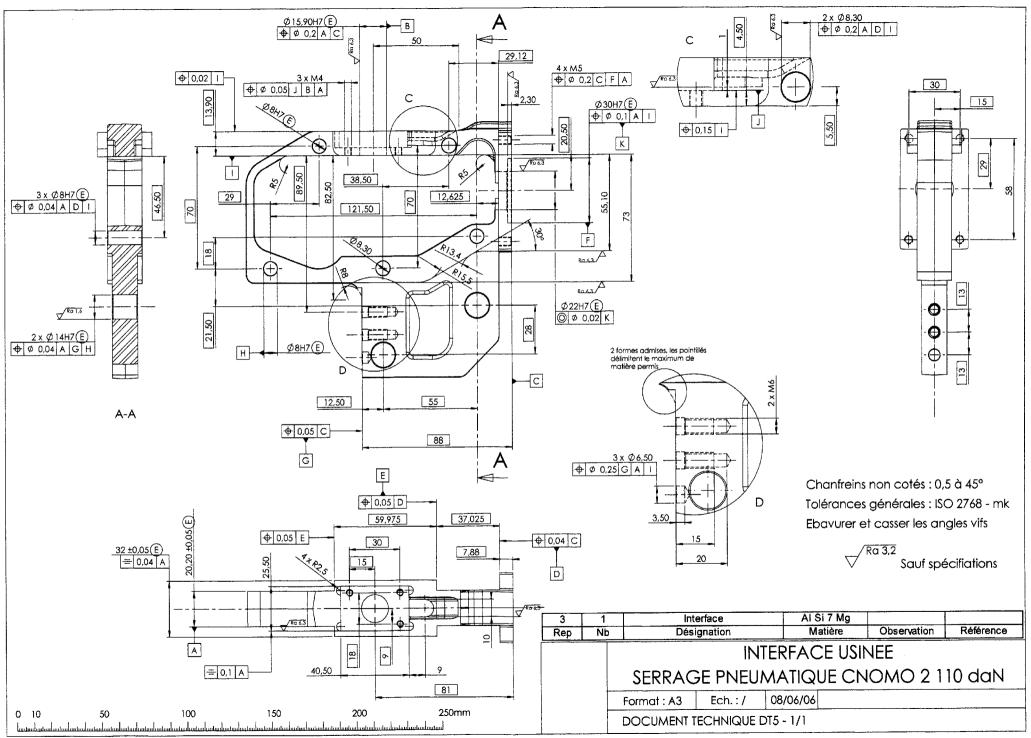
La société MECACHROME est une entreprise spécialisée dans la fabrication de pièces mécaniques à forte valeur ajoutée. Elle travaille dans les domaines de la petite à la moyenne série, voire dans l'unitaire. Ses domaines d'activité sont entre autres l'aéronautique, l'aérospatiale, le militaire et l'automobile, notamment en compétition (Formule 1, rallye,...).


Pour l'industrie automobile, la société MECACHROME fabrique et commercialise des équipements standards nommés « SERRAGES CNOMO » dont la fonction est le ferrage des carrosseries sur châssis en vue de leur assemblage par soudage. Une chaîne d'assemblage peut en intégrer jusqu'à 4500 unités.




Pour information, CNOMO signifie: COmité de NOrmalisation des MOyens de production. C'est une association loi 1901 créée par PSA Peugeot Citroën et Renault SAS en 1972 et dont le but est de promouvoir la normalisation des processus de fabrication et des biens d'équipement, conformes aux normes CNOMO, de l'industrie automobile française par l'élaboration et la mise à disposition de documents normatifs. Cette association participe aux travaux de normalisation externe ISO, CEN, AFNOR,... Certains documents CNOMO sont déjà, à ce titre, devenus des normes nationales NF, européennes EN, voire internationales ISO.


Le présent sujet étudie un prototype d'une nouvelle génération CNOMO appelée CNOMO 2 dotée d'une cinématique particulière permettant des serrages de tôles à effort constant.


La gamme de « SERRAGES CNOMO 2 » comprendra plusieurs références de capacités différentes. L'actionneur pourra être un vérin pneumatique ou électrique.

Projet de gamme Pièce : Interface

Date: 18/09/06 Indice : a

Nom:

Brut

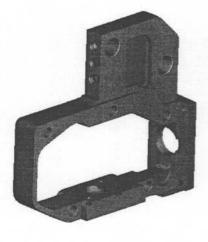
Phase no: 10

Désignation : Fraisage

Machine-outils : CU Horizontal 4 axes GSP 35

Porte-pièce : Montage spécifique

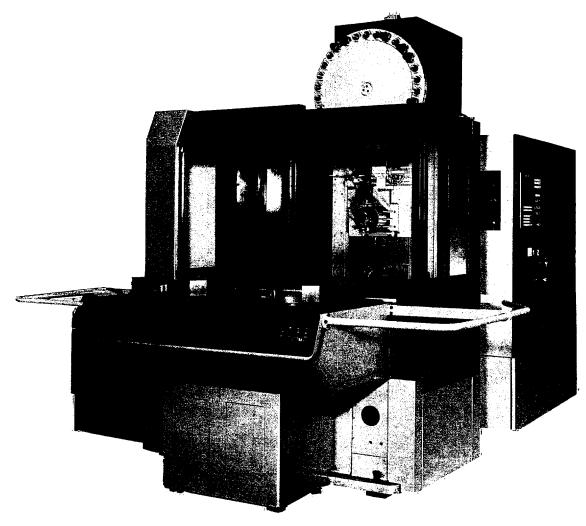
Usinage des surfaces repérées 1 à 12 sur les documents techniques DT 8 1/2 et 2/2

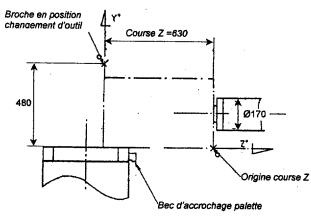

Phase n° : 20 Désignation : Fraisage

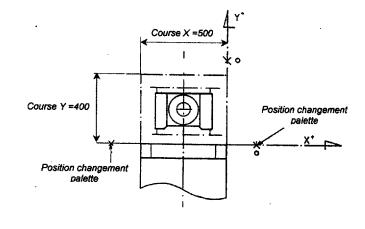
Machine-outils : CU Horizontal 4 axes GSP 35

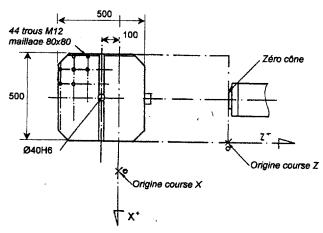
Porte-pièce : Montage spécifique

Usinage des surfaces repérées 1 à 16 sur les documents techniques DT 9 1/2 et 2/2









CENTRE D'USINAGE HORIZONTAL GSP cu 3S

CENTRE D'USINAGE HORIZONTAL GSP CU 3S

CARACTERISTIQUES PRINCIPALES

TABLE:	
• Surface	500 x 500 mm
Charge maxi admissible	300 kg
Nombre de positions indexées	360 000
COURSES:	
Longitudinale X	620 mm
Vertical Y	400 mm
Transversal Z	630 mm
Distance entre le nez de broche et l'axe de la table	
mini	100 mm
Maxi :	730 mm
BROCHE:	
Boite de vitesses à 2 gammes, changement automatique .	
• Cône	ISO 40
Puissance	8,8 kW service SI
Couple maxi transmissible	26 mdaN
Vitesse en variation continue	40 à 4000 tr/min
AVANCES:	
Variation continue	
• Travail	1 à 4000 mm/min
• Rapide	10000 mm/min
Mesure des déplacements par capteurs rotatifs	
CHANGEUR D'OUTILS AUTOMATIQUE :	
Nombre de postes du magasin	20
Diamètre maxi des outils	<i>30</i>
> Tous emplacements utilisés	65 mm
> Avec emplacement libre de part et d'autre	95 mm
> 1 seul outil (autres outils Ø 65 mm)	95 mm 120 mm
• Longueur maxi des outils	250 mm
Poids maxi d'un outil	8 kg
PUISSANCE INSTALLEE	20 kW
POIDS DE LA MACHINE	7000ka

METROLOGIE:

Les contrôles de précision sont réalisés avec un interféromètre laser suivant la norme NFE 60099.

EQUIPEMENT OPTIONNEL:

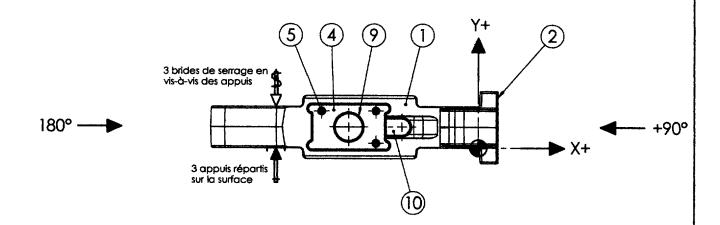
- Stabilisation thermique pour gamme standard.
- Convoyeur automatique de copeaux à tablier mécanique.
- Bris d'outils simple, longueur seulement (arrêt/marche).
- · Système d'acquisition des cotes par palpeur.

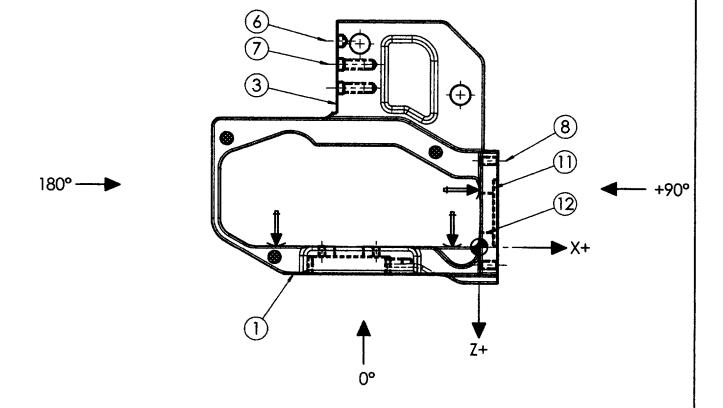
CONTRAT DE PHASE N°: 10

Pièce : Interface Date : 18/09/06

Matière : Al Si 7 Mg Indice : a

Echelle : sans


Désignation : Fraisage


Nom:

Machine-Outil: CU H 4 axes GSP 3S

Programme:

Porte-Pièce: Montage spécifique

Ne sont pas représentés les cotes de fabrication

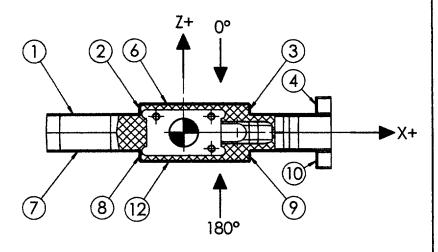
DOCUMENT TECHNIQUE DT8 - 1/2

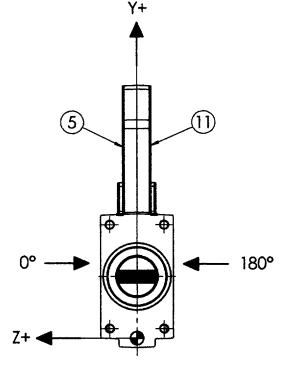
C	DNTF	TAS	DE
PH	ASE	Nº:	10

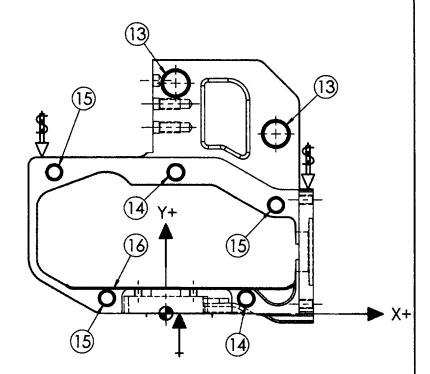
Pièce : Interface	Date : 18/09/0
Matière : Al Si 7 Mg	Indice : a
Programme:	Echelle : sans

Echelle : sans	
Nom:	

Désignation : Fraisage


Machine-Outil: CU H 4 axes GSP 3S


Porte-Pièce : Montage spécique


Rep.	Opérations	Outils	Vc m/mn	n tr/mn	fz mm/dt	f mm/tr	Vf mm/mn	a mm
а	Position B0° : Surfaçage 1	T1 : Fraise à surfacer/dresser						
b	Position B+90°: Surfaçage 2	т1		-				
С	Position B180° : Surfaçage 3	Т1						
d	Position B180°: Pointage - Chanfreinage 6 et 7 (2x)	T2 : Foret à pointer						
е	Position B+90°: Pointage - Chanfreinage 8 (4x)	T2						
f	Position B0° : Fraisage ébauche 4	T3 : Fraise 2T						·
g	Position B0° : Fraisage 10	тз						
h	Position B0° : Fraisage finition 4	T4 : Fraise 2T						
j	Position B0°: Pointage - Chanfreinage 5 (3x)	T5 : Foret à pointer					cou jes	p O
j	Position B0° : Alésage ébauche 9	T6 : Fraise 2T		.466	ions	de	205	
k	Position B+90°: Alésage éb. 11 et 12	т6	Co	Mar	pré	CIS		
1	Position B+90°: Perçage 8 (4x)	T7 : Foret hélicoïdal		No				
m	Position B+90°: Taraudage 8 (4x)	T8 : Taraud machine						
n	Position B+90°: Alésage finition 11	T9 : Barre d'alésage						
0	Position B+90° : Alésage finiton 12	T10 : Barre d'alésage						
р	Position B0° : Perçage 5 (3x)	T11 : Foret hélicoïdal						
q	Position B0° : Alésage finition 9	T12 : Alésoir machine						
r	Position B0°: Taraudage 5 (3x)	T13 : Taraud machine						
s	Position B180°: Perçage 6 et 7 (2x)	T14 : Foret hélicoïdal						
t	Position B180° : Perçage 7 (2x)	T15 : Foret hélicoïdal						
u	Position B180°: Taraudage 7 (2x)	T16 : Taraud machine						

DOCUMENT TECHNIQUE DT8 - 2/2

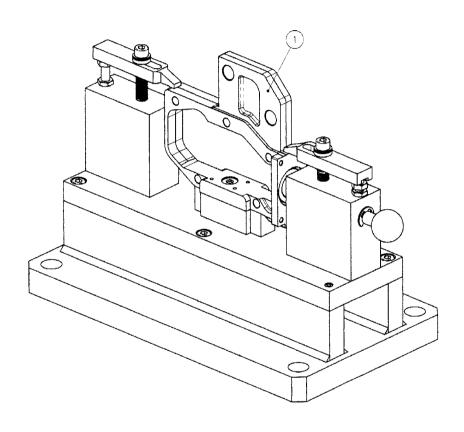
CONTRAT DE PIÈCE : Interface Date : 18/09/06 Matière : Al Si 7 Mg Indice : a Programme : Echelle : sans Désignation : Fraisage Nom : Machine-Outil : CU H 4 axes GSP 3S Porte-Pièce : Montage spécifique

Ne sont pas représentés les cotes de fabrication

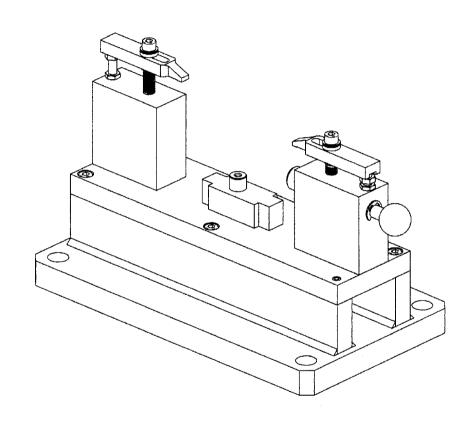
DOCUMENT TECHNIQUE DT9 - 1/2

CONTRAT	DE
PHASE N°:	20

Pièce : Interface	Date: 18/09/06	
Matière : Al Si 7 Mg	Indice : a	
Programme:	Echelle : sans	

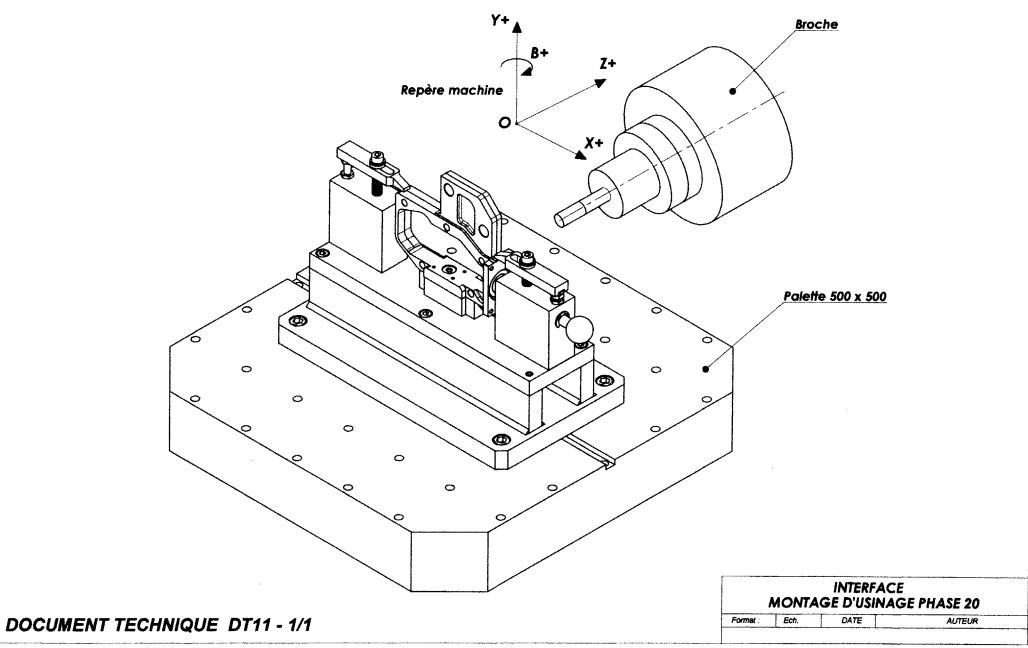

Désignation	: Fraisage	Nom:
-------------	------------	------

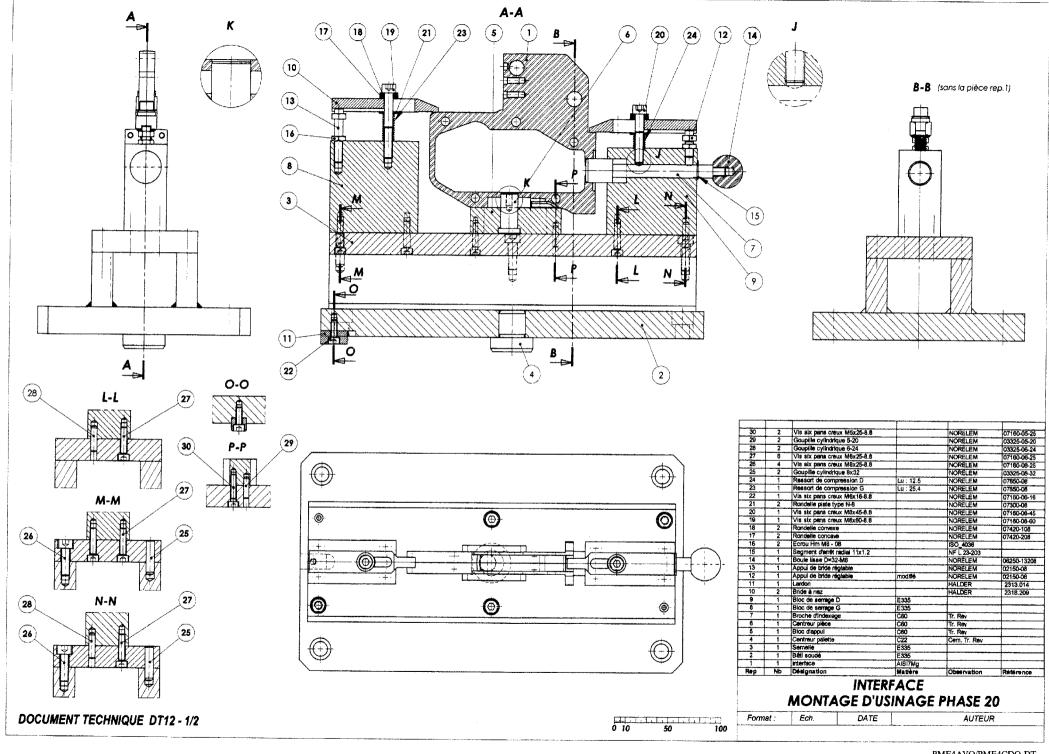
Machine-Outil: CU H 4 axes GSP 3S

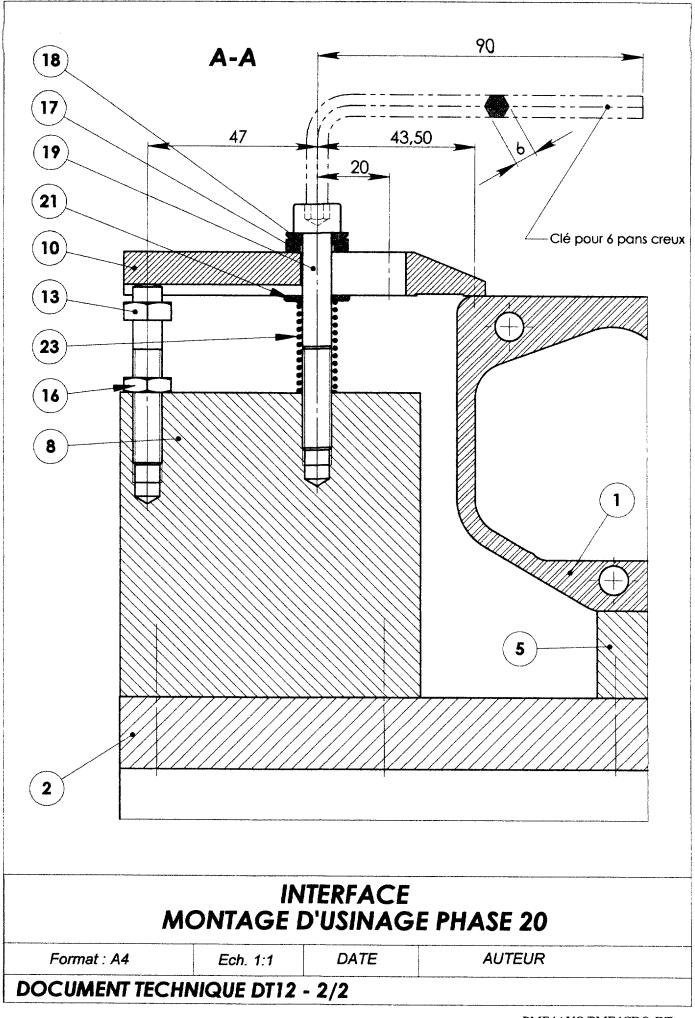

Porte-Pièce : Montage spécique

Rep.	Opérations	Outils	Vc m/mn	n tr/mn	fz mm/dt	f mm/tr	Vf mm/mn	a mm
а	Position B0°: Surfaçage - Dressage 1, 2, 3, 4, 5 et 6	T1 : Fraise 2T						
b	Position B180°: Surfaçage - Dressage 7, 8, 9, 10, 11 et 12	T1						
С	Position B180°: Dressage 16	T2 : Fraise 2T						
d	Position B180° : Pointage 13 (2x)	T3 : Foret à pointer						
е	Position B180°: Pointage - Chanfreinage 14 (2x) et 15 (3x)	тз						
f	Position B180°: Perçage 13 (2x)	T4 : Foret hélicoïdal			jons pré	40	OUP	
g	Position B180°: Perçage 13 (2x)	T5 : Foret aléseur	P	ndit	JOINS	فعاء	e s	
h	Position B180°: Perçage 14 (2x)	T6 : Foret hélicoïdal	•	nol	ble			
i	Position B180°: Perçage 15 (3x)	T7 : Foret hélicoïdal						
j	Position B180°: Perçage 15 (3x)	T8 : Foret aléseur						
k	Position B180°: Chanfreinage 13 (2x)	T9 : Fraise à chanfreiner						
	Position B0° : Alésage 13 (2x)	T10 : Alésoir machine						
m	Position B0° : Alésage 15 (3x)	T11 : Alésoir machine						
n	Position B0°: Chanfreinage 14 (2x) et 15 (3x)	Т3						
n	Position B0°: Chanfreinage 13 (2x)	T9						

DOCUMENT TECHNIQUE DT9 - 2/2


avec la pièce à usiner (rep.1 = Interface)




sans la pièce à usiner (rep.1)

INTERFACE							
	MONTA	AGE D'USII	NAGE PHASE 20				
mat :	Ech.	DATE	AUTEUR				

Mise en situation du porte-pièce sur le Centre d'Usinage Horizontal GSP

