Brevet de Technicien Supérieur

durée : 2h

Session 1996

Exercice 1: (10 points) La machine à bouchons, bts mai, 1996

Une machine fabrique plusieurs milliers de bouchons cylindriques par jour. On admet que la variable aléatoire X qui, à chaque bouchon, associe son diamètre exprimé en millimètres, suit la loi normale de moyenne m=22 mm et d'écart-type $\sigma=0,025$ mm.

Les bouchons sont acceptables si leur diamètre appartient à l'intervalle [21, 95; 22, 05].

Les trois questions de cet exercice peuvent être traitées de manière indépendante.

- 1. Quelle est la probabilité qu'un bouchon pris au hasard dans la production soit acceptable?
- 2. Dans cette question, on considère que la probabilité qu'un bouchon soit défectueux est q = 0,05.
 - On prélève au hasard un échantillon de 80 bouchons (ce prélèvement est assimilé à un tirage de 80 bouchons avec remise). On nomme *Y* la variable aléatoire mesurant le nombre de bouchons défectueux d'un tel échantillon.
 - a) Quelle est la loi suivie par la variable aléatoire Y? Déterminer l'espérance mathématique de la variable Y.
 - b) On approche Y par une variable aléatoire Y_1 qui suit une loi de Poisson $\mathcal{P}(\lambda)$. Quelle est la valeur du paramètre λ ?

Calculer la probabilité que l'échantillon prélevé contienne exactement 10 bouchons défectueux.

3. En vue du contrôle de réglage de la machine, on prélève régulièrement dans la production des échantillons de 100 bouchons.

On appelle \overline{X} la variable aléatoire qui, à chaque échantillon de 100 bouchons, associe le diamètre moyen des bouchons de cet échantillon.

Lorsque la machine est bien réglée, \overline{X} suit la loi normale de paramètres m et $\sigma' = \sigma/10$ (on rappelle que m = 22 et $\sigma = 0,025$).

- a) Déterminer le réel a tel que $P(22 a \le \overline{X} \le 22 + a) = 0,95$.
- b) Sur un échantillon de 100 bouchons, on a les résultats suivants (les mesures des diamètres étant réparties en classe d'amplitude 0, 02 mm) :

Classes de diamètres	effectif correspondant
[21, 93; 21, 95[3
[21, 95; 21, 97[7
[21, 97; 21, 99[27
[21, 99; 22, 01[30
[22, 01; 22, 03[24
[22, 03; 22, 05[7
[22, 05; 22, 07[2

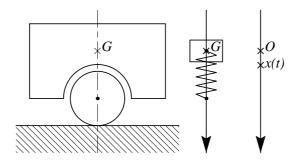
En supposant que tous les bouchons d'une classe ont pour diamètre la valeur centrale de cette classe, donner la moyenne et l'écart-type de cette série (aucune justification demandée; résultats arrondis à l'ordre 10^{-4}).

En utilisant la question précédente, peut-on accepter au seuil de risque 5%, l'hypothèse selon laquelle la machine est bien réglée ?

Exercice 2: (10 points) Suspension de remorque, bts mai, 1996

L'objet de cet exercice est l'étude de la suspension d'une remorque dans les deux cas suivants : système sans amortisseur puis avec amortisseurs.

Le centre d'inertie G d'une remorque se déplace sur un axe vertical (O,\vec{t}) dirigé vers le bas (unité : le mètre); il est repéré par son abscisse x(t) en fonction du temps t exprimé en secondes. On suppose que cette remorque à vide peut être assimilée à une masse M (M > 0) reposant sur un ressort fixé à l'axe des roues.



Le point O est la position d'équilibre occupée par G lorsque la remorque est vide.

La remorque étant chargée d'une masse, on enlève cette masse et G se met alors en mouvement. On considère que t=0 au premier passage de G en O.

- Partie A - Mouvement non amorti -

L'abscisse x(t) de G est alors, à tout instant t, solution de l'équation Mx''(t) + kx(t) = 0 où k désigne la raideur du ressort, ce qui peut encore s'écrire :

$$Mx'' + kx = 0.$$

On prend : $M = 250 \text{ kg et } k = 6250 \text{ N.m}^{-1}$.

Déterminer la solution particulière de l'équation différentielle (1) vérifiant les conditions initiales x(0) = 0 et $x'(0) = -0, 10 \text{ m.s}^{-1}$.

Préciser la période de cette solution particulière.

- Partie B - Mouvement amorti -

On équipe la remorque d'amortisseurs de constante d'amortissement λ . L'abscisse x(t) du point G vérifie alors à tout instant t l'équation $Mx''(t) + \lambda x'(t) + kx(t) = 0$, ce qui peut encore s'écrire

$$Mx'' + \lambda x' + kx = 0.$$

On prend : M = 250 kg, $k = 6250 \text{ N.m}^{-1}$ et $\lambda = 1500 \text{ N.s.m}^{-1}$.

- 1. a) Déterminer dans ces conditions la solution générale de l'équation différentielle (2).
 - b) Sachant que x(0) = 0 et x'(0) = -0.08 m.s⁻¹, déterminer la solution particulière de l'équation (2) définissant le mouvement de G.
- **2.** On considère la fonction f définie sur l'intervalle $[0, +\infty[$ par $f(t) = -0, 02e^{-3t}\sin(4t)$.
 - a) Déterminer les valeurs de t appartenant à l'intervalle [0; 1, 5] pour lesquelles f(t) = 0.
 - b) Déterminer la dérivée f' de la fonction f.
 - c) On admet que, pour $a \neq 0$, les équations

$$a \sin \alpha + b \cos \alpha = 0$$
 et $\tan \alpha = -\frac{b}{a}$ (d'inconnue α)

ont les mêmes solutions.

Déterminer des valeurs approchée à 10^{-2} près des nombres réels t appartenant à l'intervalle [0; 1, 5] et annulant f'(t). Pour chaque valeur ainsi obtenue, préciser la valeur correspondante de f(t).

d) Déduire des questions précédentes l'allure de la courbe C_f , représentative de f dans le plan rapporté à un repère orthogonal. On prendra 10 cm (ou 10 grands carreaux) pour unité en abscisse, et 1 cm (ou 1 grand carreau) pour 0,002 unité en ordonnée.