BREVET DE TECHNICIEN SUPÉRIEUR MÉCANIQUE ET AUTOMATISMES INDUSTRIELS

ÉPREUVE: SCIENCES PHYSIQUES

Durée : 2 heures

Coefficient: 2

L'usage de la calculatrice est autorisé.

<u>IMPORTANT</u>: Ce sujet comporte 4 pages numérotées de 1 à 4 + la page de présentation. Assurez-vous qu'il est complet. S'il est incomplet, veuillez le signaler au surveillant de la salle qui vous en remettra un autre exemplaire.

RÉGULATION DE LA VITESSE D'UN MOTEUR A COURANT CONTINU

Les trois parties du problème sont indépendantes.

I - ÉTUDE DU MOTEUR À COURANT CONTINU À EXCITATION INDÉPENDANTE (7,5 pts)

Le moteur est alimenté sous tension U variable obtenue à l'aide d'un hacheur et à courant d'excitation constant.

On lit sur la plaque signalétique les données suivantes :

 $U_N = 240 \text{ V}$

 $I_{N} = 10 A$

 $n_N = 1000 \text{ tr.min}^{-1}$

Résistance d'induit $R = 0.9 \Omega$

- I.1) Le moteur fonctionne en charge aux valeurs nominales.
 - I.1.1 Calculer la force électromotrice E du moteur ; sachant que $E = K_1.\Omega$ avec $\Omega = \underbrace{2.\pi.n_N}_{6O}$, en déduire K_1 en $(V.rad^{-1}.s)$.
 - I.1.2 Montrer que le couple électromagnétique T_{em} est proportionnel au courant I d'induit : $T_{em} = K_1 I$. Calculer T_{em} .
 - I.1.3 Calculer les pertes par effet Joule dans l'induit P_{JR}.
 - I.1.4 Sachant que les pertes Joule dans l'inducteur et les pertes collectives du moteur valent respectivement $P_{JS} = 180 \text{ W}$ et $P_C = 150 \text{ W}$, calculer la puissance utile P_U , le couple utile T_U et le rendement η du moteur.
- I.2) Le moteur fonctionne à vide ; l'intensité du courant dans l'induit est considérée comme étant négligeable.
 - I.2.1 Déterminer la force électromotrice à vide E_0 et la vitesse angulaire de rotation à vide Ω_0 .
 - I.2.2 Calculer la variation de la fréquence de rotation $\Delta\Omega=\Omega_0$ Ω_N entre les vitesses angulaires de rotation à vide et nominale.
 - I.2.3 Montrer que l'on peut écrire $\Delta\Omega = \frac{R \times I_N}{K_1}$.

II - ÉTUDE DU HACHEUR (5 pts)

Le réglage de la vitesse du moteur est obtenu en agissant sur la valeur moyenne < u > de la tension d'alimentation de l'induit du moteur par l'intermédiaire d'un hacheur à thyristor. (Fig 1, page 4/4) Celui-ci est alimenté par une tension continue $U_0 = 300 \text{ V}$.

- II.1) Citer deux composants qui peuvent être utilisés pour réaliser un hacheur.
- II.2) On a relevé les oscillogrammes de u(t) et i(t) (Fig 2, page 4/4).
 - II.2.1 En déduire la fréquence f de hachage et le rapport cyclique α.

- II.2.2 Montrer que l'expression de la tension moyenne $\langle u \rangle$ est $\langle u \rangle = \alpha \ U_0$. Calculer la valeur numérique de $\langle u \rangle$.
- II.2.3 Déterminer <i> (valeur moyenne de l'intensité i) Déterminer la valeur de l'ondulation Δi de courant.
- II.3) On désigne par L l'inductance de l'induit. Sachant que l'ondulation du courant a pour expression : $\Delta i = \frac{U_0}{2Lf} \alpha (1-\alpha)$, calculer la valeur de L pour les valeurs de α et de f déterminées à la question 2.1.
- II.4) Le dispositif de commande est tel que le rapport cyclique α est proportionnel à une tension de commande u_C : $\alpha = 0.2.u_C$ Montrer que <u $> = K_2.u_C$, déterminer K_2 .

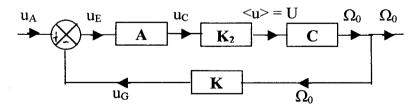
III - ÉTUDE DE L'ASSERVISSEMENT DU MOTEUR (7,5 pts)

On prendra désormais pour caractéristiques du moteur et du hacheur étudiés précédemment les valeurs suivantes :

* Moteur :
$$C = \frac{1}{K_1} = 0.45 \text{ rad.s}^{-1}.V^{-1}$$

L'induit a pour résistance $R = 0.9 \Omega$

* Hacheur:
$$K_2 = \frac{\langle u \rangle}{u_C} = 60$$
 u_C : tension d'alimentation de la commande du hacheur


- * Amplificateur : A = 20
- * Génératrice tachymètrique fournissant une tension image de la vitesse de rotation :

$$K = \frac{U_G}{\Omega} = 9.5 \times 10^{-2} \text{ V.s. rad}^{-1}$$

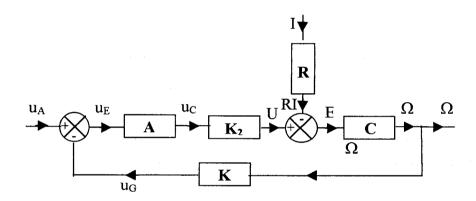
Les grandeurs A, K₂, C et K représentent les fonctions de transfert des différents modules du système bouclé ci-dessous.

A - Le moteur fonctionne à vide I = 0

Le schéma fonctionnel du système est :

On note Ω_0 la vitesse de rotation à vide $\Omega_0 = 108.8 \text{ rad.s}^{-1}$.

- III.A.1 Exprimer la fonction de transfert de la chaîne directe $H_0 = \frac{\Omega_0}{u_E}$ en fonction de A, C et K_2 .


 Calculer H_0 .
- III.A.2 Exprimer u_E en fonction de u_A , Ω_0 et K.
- III.A.3 Montrer que la fonction de transfert $T_0 = \frac{\Omega_0}{u_A}$ du système en boucle fermée peut s'écrire :

$$T_0 = \frac{H_0}{1 + H_0 K}$$
. Calculer T_0 .

III.A.4 Calculer la valeur à donner à la tension de consigne u_A pour obtenir $\Omega = \Omega_0$.

B - Le moteur fonctionne en charge I = 10 A

La tension de consigne a pour valeur $u_A = 10,5 \text{ V}$, le couple résistant de la charge est constant.

- III.B.1 Détermination de la relation entre Ω et u_E de la chaîne directe
 - III.B.1.1 Exprimer U en fonction de uE, A et K2;
 - III.B.1.2 Exprimer E en fonction de uE, A, K2 et RI;
 - III.B.1.3 En déduire la relation $\Omega = C A K_2 u_E RIC$
- III.B.2 La relation du système bouclé s'écrit :

$$\Omega = \Omega_0 - RIC \frac{1}{1 + H_0 K}$$

Donner l'expression de la variation de la fréquence de rotation $\Delta\Omega = \Omega_0 - \Omega$. Calculer numériquement $\Delta\Omega$ et conclure.

Fig 1: Hacheur à Thyristor

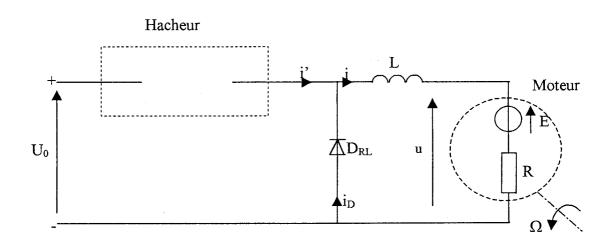
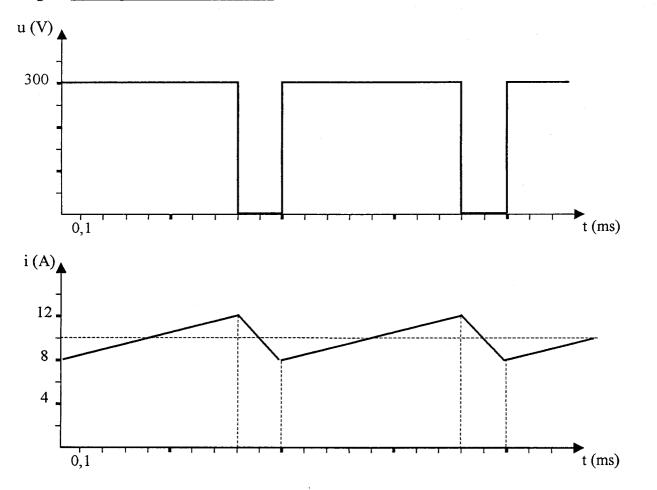



Fig 2 : Oscillogrammes de u(t) et i(t)

