

Ce document a été numérisé par le <u>CRDP de Bordeaux</u> pour la Bose Mationale des suiets d'il Base Nationale des Sujets d'Examens de l'enseignement professionnel.

Campagne 2013

BREVET DE TECHNICIEN SUPÉRIEUR BIOTECHNOLOGIES

SCIENCES PHYSIQUES ET CHIMIQUES

DURÉE DE L'ÉPREUVE : 2h

Matériel autorisé :

COEFFICIENT: 1

impris les

professionnel Toutes les calculatrices de poche y compris les calculatrices programmables, alphanumériques ou à écran graphique que leur fonctionnement soit autonome et qu'il ne soit pas fait usage d'imprimante (Circulaire n°99-186, 16/11/1999).

> Des que le sujet vous est remis, assurez-vous qu'il est complet. Le sujet se compose de 7 pages, numérotées de 1 sur 7 à 7 sur 7.

Les données sont en italique.

Les données numériques sont indiquées dans chaque exercice.

La correction de l'épreuve tiendra le plus grand compte de la clarté dans la conduite de la résolution et dans la rédaction de l'énoncé des lois, de la compatibilité de la précision des résultats numériques avec celle des données de l'énoncé (nombre de chiffres significatifs), du soin apporté aux représentations graphiques éventuelles et de la qualité de la langue française dans son emploi scientifique.

BTS BIOTECHNOLOGIES		Session 2013
Sciences physiques et chimiques	BOE1SC	Page 1 sur 7

I. Synthèse de l'Inapétyl ® (18 points)

La plupart des questions sont indépendantes. Toutes les équations de réaction demandées doivent être équilibrées (nombres stœchiométriques ajustés).

Données:

Inapétyl® (noté H), est le nom commercial de la

(2S)-N-benzyl-N-méthyl-1-phénylpropan-2-amine, dérivé de l'amphétanime, utilisé pour restreindre l'appétit chez les personnes souffrant d'obésité.

Sa formule est la suivante :

Une synthèse de cette molécule est proposée ci-dessous :

Étape 1 :

Le benzène réagit avec le monochlorométhane en présence de trichlorure d'aluminium AICI₃ (s) pour former un composé **A** monosubstitué.

<u>Étape 2 :</u>

Le composé **A**, traité par le dichlore en présence d'un rayonnement ultraviolet, est transformé en un produit monohalogéné noté **B**.

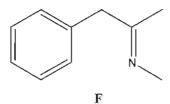
Étape 3 :

En présence de magnésium solide dans l'éther anhydre, le composé **B** réagit pour donner un produit noté **C**.

B

Étape 4 :

Le composé **C** réagit avec un aldéhyde pour former, après hydrolyse acide, le composé **D** cidessous :


D

L'oxydation du composé **D** par le dichromate de potassium conduit à produit **E**, qui réagit positivement à la 2,4-dinitrophénylhydrazine mais négativement à la liqueur de Fehling.

BTS BIOTECHNOLOGIES		Session 2013
Sciences physiques et chimíques	BOE1SC	Page 2 sur 7

Étape 6 :

La méthylamine réagit avec le composé **E** ; on obtient le produit **F** ci-dessous et de l'eau.

Étape 7 :

Le composé F est traité par du dihydrogène sur du nickel de Raney. On observe une hydrogénation de la liaison double C=N. On obtient une amine secondaire notée G de formule brute $C_{10}H_{15}N$.

<u>Étape 8 ;</u>

Le composé **G** réagit avec le 1-chloro-1-phénylméthane en présence d'une base pour donner l'Inapétyl® noté **H**.

1. Étape 1 :

- 1.1. Écrire l'équation de la réaction conduisant au composé. A.
- 1.2. Donner le mécanisme de cette réaction en expliquant le rôle du trichlorure d'aluminium AlCl₃(s).

2. Étape 2 :

- 2.1. Écrire l'équation de la réaction conduisant au composé B.
- 2.2. Caractériser cette réaction à l'aide d'un ou plusieurs des mots suivants : addition, substitution, élimination, radicalaire, électrophile, nucléophile.

3. Étape 3:

- 3.1. Écrire la formule semi-développée du composé C.
- 3.2. Citer au moins l'une des précautions à prendre pendant cette synthèse.

4. Étape 4:

- 4.1. Écrire la formule semi-développée et le nom de l'aldéhyde et que l'on doit faire réagir avec le composé **C**, pour obtenir après hydrolyse l'alcool **D**.
- 4.2. L'alcool **D** existe sous forme de deux énantiomères.

Écrire une représentation de Cram de chacun d'eux.

Indiquer la configuration absolue du carbone asymétrique en donnant sans justifier, l'ordre de priorité des différents groupements.

5. Étape 5

5.1. Quelle information apporte le test à la 2,4-dinitrophénylhydrazine?

Quelle information apporte le test à la liqueur de Fehling?

En déduire le groupe fonctionnel présent dans le composé E.

5.2. Écrire la formule semi-développée du composé E.

6. Étape 6 :

Écrire l'équation de la réaction entre le composé E et la méthylamine.

7. Étape 7:

Écrire la formule semi-développée du composé G.

BTS BIOTECHNOLOGIES		Session 2013
Sciences physiques et chimiques	BOE1SC	Page 3 sur 7

8. Étape 8 :

- 8.1. Caractériser la réaction permettant le passage du composé G au produit H à l'aide d'un ou plusieurs des mots suivants : addition, substitution, élimination, radicalaire, électrophile, nucléophile,
- 8.2. La vitesse de la réaction de l'étape 8 ne dépend pas de la concentration en composé G. Quelle précision d'ordre cinétique peut-on apporter sur la nature du mécanisme ?

II. Dosage des jons Ca²⁺(ag) dans une eau d'Évian (18 points)

Les trois parties de cet exercice sont indépendantes.

- 1. Le numéro atomique du calcium vaut Z = 20.
 - 1.1. Donner la configuration électronique de l'atome de calcium dans son état fondamental.
 - 1.2. Justifier la formation de l'ion Ca²⁺.

2. Sur l'étiquette d'une eau d'Évian, on trouve l'information suivante : Teneur en Ca^{2+} : 78 mg. L^{-1} .

On souhaite vérifier cette information en effectuant un dosage complexométrique des ions Ca²⁺(aq) par l'acide éthylène diamine tétraacétique (EDTA).

Données:

- Produits de solubilité : Ca(OH)₂(s) : pKs₁ = 5,2 $Mg(OH)_2(s)$: $pKs_2 = 8.7$ • Produit ionique de l'eau : $Ke = 10^{-14}$ à 25°C

2.1. Choix du pH de travail:

L'eau d'Évian contient également des ions Mg²⁺(aq) qui réagissent avec l'EDTA. Pour déterminer la concentration en ions Ca²⁺(aq), il faut éliminer les ions Mg²⁺(aq) afin de doser seulement les ions Ca²⁺(aq). On procède par précipitation sélective. En effet, les ions Ca²⁺(aq) et Mg²⁺(aq) forment avec les ions HO⁻(aq) des précipités d'hydroxyde de calcium Ca(OH)₂(s) et d'hydroxyde de magnésium Mg(OH)₂(s). Ces précipités apparaissent à des valeurs de pH différentes.

Il est donc nécessaire de déterminer un pH pour lequel les ions Mg²⁺(aq) ont précipité alors que les ions Ca²⁺(aq) sont libres.

On travaillera avec les concentrations molaires suivantes :

- $[Ca^{2+}(aq)] = c_1 = 2.0 \times 10^{-3} \text{ mol.L}^{-1} \text{ et}$
- $[Mg^{2+}(ag)] = c_2 = 1.0 \times 10^{-3} \text{ mol.L}^{-1}$.
 - Écrire l'équation de la réaction de précipitation de l'hydroxyde de calcium $Ca(OH)_2(s)$.

Calculer le pH du début de précipitation d'une solution aqueuse d'ions Ca²⁺(aq) à la concentration molaire $c_1 = 2.0 \times 10^{-3}$ mol.L⁻¹.

2.1.2 Écrire l'équation de la réaction de précipitation de l'hydroxyde de magnésium $Mq(OH)_2(s)$.

Calculer le pH de début de précipitation d'une solution aqueuse d'ions Mg²⁺(aq) à Ia concentration molaire $c_2 = 1,0 \times 10^{-3}$ mol.L⁻¹.

2.1.3. On choisit de travailler à un pH égal à 12,5. Calculer la concentration molaire en ions Mg²⁺(aq) restant libres à ce pH.

BTS BIOTECHNOLOGIES		Session	2013
Sciences physiques et chimiques	BOE1SC	Page 4	sur 7

2.1.4. Expliquer le choix de cette valeur de pH pour séparer les ions Mg2+(aq) et les ions $Ca^{2+}(aq)$.

2.2. Dosage des ions Ca²⁺(aq) par l'EDTA: En milieu basique, l'EDTA, noté Y⁴⁻(aq), donne avec les ions Ca²⁺(aq) un complexe [CaY]²-(ag) dont la constante de formation vaut $\beta = 5 \times 10^{10}$.

Les trois ions Ca²⁺(aq), Y ⁴⁻(aq) et [CaY] ²⁻(aq) sont incolores. Pour repérer l'équivalence, on utilise un indicateur coloré, noté Ind 4-(aq), bleu quand il est libre et qui donne avec les ions Ca²⁺(ag) un complexe [Calnd] ²⁻(ag) de couleur rose.

Le protocole du dosage est le suivant :

Dans un bécher, on introduit un volume V = 50,0 mL d'eau d'Évian et on ajoute une solution aqueuse d'hydroxyde de sodium (soude) jusqu'à obtenir un pH égal à 12,5. On filtre de manière à éliminer le solide Mg(OH)₂(s). On récupère le filtrat qui contient les ions Ca²⁺(ag). On ajoute au filtrat l'indicateur coloré. On dose le filtrat avec une solution aqueuse d'EDTA de concentration molaire $C_0 = 0.0250 \text{ mol.L}^{-1}$. L'équivalence, caractérisée par le changement de couleur de la solution du rose au bleu, est obtenue pour un volume de solution aqueuse $d'EDTA V_{eq} = 3,90 mL.$

Donnée:

 $\overline{\text{Masse molaire atomique du calcium : } M(Ca) = 40,1 \text{ g.mol}^{-1}$

- 2.2.1. Écrire l'équation de réaction de la formation du complexe [CaY]²-(aq). Donner l'expression de sa constante de formation β .
- 2.2.2. En repérant les espèces colorées présentes avant et après l'équivalence, expliquer en détail le rôle de l'indicateur coloré. Commenter la stabilité du complexe [CaInd]²-(aq) par rapport au complexe [CaY]²-(aq).
- 2.2.3. Donner en la justifiant l'expression de la quantité de matière d'ions Ca²⁺(aq) dosés en fonction de C₀ et V_{eq}. Calculer cette quantité de matière d'ions Ca²⁺(aq) dosés.
- 2.2.4. Calculer la concentration molaire en ions Ca²⁺(aq), puis calculer la concentration massique en ions Ca²⁺(aq) dans l'eau d'Évian. Conclure.

III. Spectroscopie UV-visible (14 points)

On veut déterminer par spectroscopie UV-visible la concentration d'une solution aqueuse de permanganate de potassium $(K^{+}(aq)+MnO_{4}^{-}(aq))$.

- 1. Donner les quatre éléments principaux d'un spectrophotomètre.
- 2. Un laboratoire possède un spectrophotomètre de haute qualité, dont le monochromateur peut être utilisé dans l'ultraviolet, le visible et l'infrarouge. Il comprend un jeu de plusieurs réseaux en fonction de la longueur d'onde de travail. Pour ce dosage, on choisit un réseau gravé ayant 500 traits par mm.

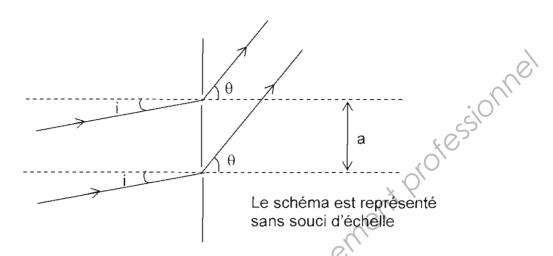
Le réseau est éclairé sous incidence normale par des radiations de longueur d'onde comprises entre λ_1 = 400 nm et λ_2 = 800 nm.

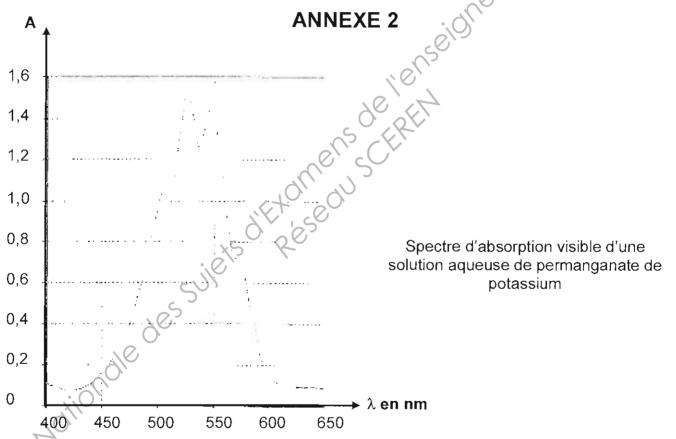
- 2.1. Définir et calculer le pas du réseau utilisé.
- 2.2. La formule fondamentale des réseaux plans est sin θ = sin i + $k\frac{\Lambda}{2}$.

À l'aide de l'annexe 1 page 7, donner la signification des différents termes figurant dans cette formule en précisant les unités.

2.3. Calculer dans le spectre d'ordre 1, les angles θ_1 et θ_2 pour les radiations de longueur d'onde λ_1 et λ_2 , le réseau étant éclairé sous incidence normale. En déduire l'écart angulaire entre les deux radiations.

BTS BIOTECHNOLOGIES		Session 2013
Sciences physiques et chimiques	BOE1SC	Page 5 sur 7


- 3. En annexe 2 page 7 sont donnés :
 - Le spectre d'absorption d'une solution aqueuse de permanganate de potassium $(K^{+}(aq)+MnO_{\Lambda}^{-}(aq)).$
 - Le tableau associant couleur et longueur d'onde dans le vide correspondante.
 - Le tableau associant la couleur des radiations absorbées par une solution aqueuse et la couleur percue par l'œil de la solution aqueuse.


La couleur d'une solution aqueuse de permanganate de potassium est magenta. Justifier cette affirmation à l'aide des documents de l'annexe 2 page 7.

- **4**. À la longueur d'onde de travail (λ_{max} = 525 nm), le coefficient d'extinction molaire vaut ε = 2160 L.mol⁻¹.cm⁻¹. La longueur ℓ de la cuve, est égale à 1,00 cm. La solution aqueuse inconnue de permanganate de potassium a une absorbance A = 0.540.
 - 4.1. La relation liant l'absorbance à la transmittance T est A = logT. Calculer la transmittance de cette solution aqueuse de permanganate de potassium.
 - 4.2. Énoncer la loi de Beer-Lambert en définissant les grandeurs introduites et en précisant
- aqueus de lienseigners de lien 4.3. Calculer la concentration molaire de cette solution aqueuse de permanganate de

BTS BIOTECHNOLOGIES Session 2013 BOE1SC Page 6 sur 7 Sciences physiques et chimiques

ANNEXE 1
Schéma de principe d'un réseau plan

Couleur	Longueur d'onde en nm
Infrarouge	> 740
Rouge	≈ 615-740
Orange	≈ 590-615
Jaune	≈ 565-590
Vert	≈ 510-565
Bleu	≈ 446-510
Violet	≈ 380-446
Ultraviolet	<380

Couleur des radiations absorbées par une solution aqueuse éclairée en lumière blanche	Couleur perçue par l'œil de la solution aqueuse
Bleu	Jaune
Vert	Magenta
Jaune	Bleu
Rouge	Cyan

BTS BIOTECHNOLOGIES		Session 2013
Sciences physiques et chimiques	BOE1SC	Page 7 sur 7