BREVET DE TECHNICIEN SUPERIEUR

BATIMENT

EPREUVE: SCIENCES PHYSIQUES

Durée : 2 heures

Coefficient: 2

- * La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l'appréciation des copies.
- * L'usage de la calculatrice est autorisé.
- * Les parties I, II et III sont indépendantes.

Le sujet comporte 3 pages numérotées de 1 à 3 plus la page de présentation. Assurez-vous qu'il est complet. S'il est incomplet, veuillez le signaler au surveillant de la salle qui vous en remettra un autre exemplaire.

I - CHIMIE (6 points)

- 1 a) Ecrire les formules semi-développées des alcanes suivants :
 - le n hexane, le 2-méthylpentane et le 2,2-diméthylbutane.
 - b) Sont-ils des isomères ? Justifier la réponse.
- 2 On admet, pour simplifier, qu'une essence est constituée d'un mélange de plusieurs alcanes ayant chacun pour formule : C_6H_{14} . Ecrire l'équation bilan de combustion complète de cette essence.
- **3** L'essence précédente a un pouvoir calorifique de 4200 kJ.mol⁻¹ et une masse volumique de 750 kg.m⁻³.

Une voiture consomme en moyenne 8 litres de cette essence pour 100 km.

- a) Calculer la quantité de chaleur fournie par la combustion de l'essence lors d'un parcours de 100 km.
- **b)** Calculer le volume de dioxyde de carbone rejeté lors du parcours de 100 km en supposant que la combustion de l'essence est complète .

DONNEES:

- le volume molaire des gaz à la température de fonctionnement du moteur est de 24 L.mol⁻¹.
- $M(H) = 1 \text{ g.mol}^{-1}$.
- $M(C) = 12 \text{ g.mol}^{-1}$.

II - ACOUSTIQUE (7 points)

LES DEUX PARTIES A ET B SONT INDEPENDANTES.

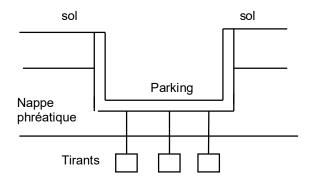
<u>Donnees pour tout l'exercice</u>: au seuil d'audibilité l'intensité acoustique est $I_0 = 10^{-12} \text{ W.m}^{-2}$.

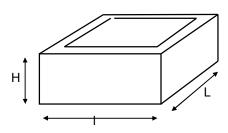
 \boldsymbol{A}

1-1) Une source S émet un son dont la longueur d'onde dans l'air à 20 °C est λ. La célérité du son

dans l'air à cette température étant C, exprimer littéralement la fréquence f du son et calculer sa valeur.

$$\lambda = 77, 27 \text{ cm}$$
 $C = 340 \text{ m.s}^{-1}$


- 1-2) Quelle est la fréquence f' du son situé un octave au-dessus du précédent?
- 2-1) La puissance de la source S est de 6.10⁻³ W. Calculer, en décibels, le niveau d'intensité acoustique (NI) en un point M situé à 4,9 m de S. On suppose que la source est ponctuelle, que l'espace est libre et isotrope, et que la propagation s'effectue sans dissipation d'énergie.
- 2-2) On s'éloigne de la source suivant la direction SM, et à une distance x de M on enregistre une diminution du niveau d'intensité acoustique de 3 dB. Calculer la valeur de x.
- **B** Dans un atelier, l'analyse du bruit d'une machine au sonomètre a donné les résultats suivants :


f (en Hz)	125	250	500	1000	2000	4000
NI (en dB)	65	70	75	68	57	53

En appelant NI_1 , NI_2 , NI_3 , NI_4 , NI_5 , NI_6 , les différentes valeurs du niveau d'intensité sonore dans chacune des bandes de fréquence précédentes, donner l'expression littérale du niveau d'intensité sonore global NI de ce bruit, puis calculer numériquement NI.

III - <u>HYDROSTATIQUE</u>

(7 points)

Pour protéger un parking souterrain contre les eaux de la nappe phréatique, on a fabriqué un cuvelage en béton dont les dimensions extérieures sont :

hauteur H = 4,75 mlargeur l = 12,5 mlongueur L = 40 m

L'épaisseur du fond et des 4 parois verticales, en béton, est constante et égale à e = 0.30 m.

On donne:

- masse volumique du béton : $\rho_b = 2200 \text{ kg.m}^{-3}$,

- masse volumique de l'eau : $\rho_e =$ 1000 kg.m^-3,

- accélération de la pesanteur : $\textbf{g} = 10 \text{ m.s}^{-2}.$

- 1) Exprimer littéralement puis calculer la masse du cuvelage.
- 2) Le cuvelage est immergé dans une hauteur d'eau h = 2,10 m. Calculer l'intensité de la force pressante, f, exercée par l'eau de la nappe phréatique sur chacune des parois verticales et sur le fond du cuvelage.

3)

- 3-a) Calculer la poussée d'Archimède que subit le cuvelage.
- **3-b)** Montrer que pour rester immergé dans la hauteur **h** d'eau, celui-ci doit être ancré dans le sol.
- 3-c) Calculer l'intensité, T, de la force totale exercée par les tirants sur le cuvelage.