BREVET DE TECHNICIEN SUPÉRIEUR BÂTIMENT

Épreuve E4 – Étude technique

Sous - épreuve E41
Dimensionnement et vérification d'ouvrages

SESSION 2019

Durée : 4 heures

Coefficient: 2

<u>Matériel autorisé</u> : l'usage de tout modèle de calculatrice, avec ou sans mode examen, est autorisé.

« Le document réponse (page 18/18), même vierge, doit être rendu avec la copie. »

Dès que le sujet vous est remis, assurez-vous qu'il est complet. Ce sujet comporte 18 pages numérotées de 1/18 à 18/18.

BTS BÂTIMENT	SESSION 2019	
E41 - Dimensionnement et vérification d'ouvrages	Code : BTE4DVO	Page 1 sur 18

Projet : ENTREPÔT DU VILPION

Contenu du dossier

Dossier sujet:

Pages 2 & 3 : Présentation de l'ouvrage.

Page 3 & 4 : Caractéristiques des matériaux utilisés sur l'ouvrage.

et charges surfaciques.

Pages 4 à 6 : Travail demandé.

Dossier de plans :

Page 7 : DT 1 - Plan de masse.

Page 8 : DT 2 - Plans partiels du R.d.C et du 1^{er} niveau.

Page 9 : DT 3 - Coupes 5-5 et 7-7.

Page 10 : DT 4 - Vue en plan et en 3D de la charpente.

Page 11 : DT 5 - Coupe A-A sur charpente ; détail acrotère; portique file 8.

Page 12 : DT 6 - Plan de coffrage partiel du plancher haut du R.d.C.

Dossier annexes et formulaires :

Page 13 : DT 7 - Tableau d'IPE - Intégrales de Mohr.

Page 14 : DT 8 - Théorème de Muller-Breslau - Vérification de profilé métallique.

Page 15 : DT 9 - Portées utiles - Théorème des trois moments.

Page 16 : DT 10 - Organigrammes : Calculs aciers longitudinaux et d'effort tranchant.

Page 17 : DT 11 - Organigramme du calcul des poteaux - Méthode des forces - Tableau

d'aciers.

Page 18 : DR - Document Réponse.

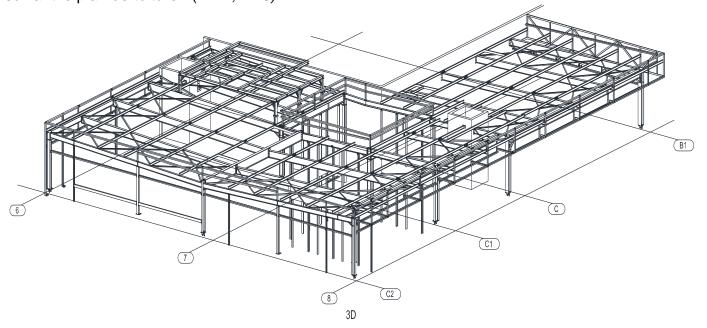
Barème

ÉTUDE 1	Vérification d'une panne courante en IPE 140	4 points
ÉTUDE 2	Étude du porte-à-faux de l'Empannon	4 points
ÉTUDE 3	Étude de la poutre B.A. continue file 8	6,5 points
ÉTUDE 4	Étude du poteau soutenant la poutre en B'	2 points
ÉTUDE 5	Étude du portique de contreventement situé file 8'	3,5 points

Présentation de l'ouvrage

Descriptif sommaire de la construction :

Construction comprenant au sein du même bâtiment, une zone de stockage (entrepôt), et une zone de bureaux.


La partie de stockage ne comprend qu'un niveau de structure métallique excepté les pannes qui sont en béton précontraint.

Notre étude portera sur la zone de bureau, composée d'une structure B.A. en R.d.C. et d'une structure métallique au dernier niveau (R+1).

Charpente couverture:

Couverture composée de bacs acier supportant une étanchéité et une isolation thermique. Faux plafond du type Ecophon en sous-face.

La charpente métallique est composée de pannes IPE 140 reposant sur des empannons en IPE 400, s'appuyant eux-mêmes sur un mur B.A. d'un côté et sur une poutre IPE 450 de l'autre, suivant le plan de toiture : (*DT4* ; *DT5*).

BTS BÂTIMENT	SESSION 2019	
E41 - Dimensionnement et vérification d'ouvrages	Code: BTE4DVO	Page 2 sur 18

Fondations:

Composition des fondations semi-profondes :

- Massifs en gros béton,
- Semelles B.A. (Béton Armé) de 40 cm d'épaisseur sur massifs,
- Longrines et poutres voiles en béton armé coulées en place en deux phases reposant sur les semelles B.A.

Éléments verticaux béton :

- Murs de séparation entrepôt bureau en B.A. (Béton Armé) de 20 cm d'épaisseur.
- Poteaux B.A.
- Cloisons de 7,5 cm et de 10 cm d'épaisseur à haute performance acoustique.

Éléments horizontaux béton :

- Plancher en dalles alvéolées CF 1 h du type DSL (haut R.d.C. des bureaux).
- Dallage (bas du R.D.C.).

Données complémentaires :

La pente de 3,1 % de la couverture sera négligée pour l'étude mécanique.

Béton armé (classe structurale S4 pour tous les éléments B.A. étudiés) :

Béton : Classe de résistance C 30/37

 $f_{\rm ck}$ = 30 MPa $\left(f_{cd} = \frac{f_{ck}}{1.5}\right)$

 f_{ctm} = 2,9 MPa

Classe d'exposition XC4 pour tous les éléments B.A étudiés.

Armature pour B.A. B500 classe B

 $f_{yk} = 500 \text{ MPa} \quad \left(f_{yd} = \frac{f_{yk}}{1,15} \right)$

Acier de charpente S 235 classe 1

 $f_y = 235 \text{ MPa}$

 γ mo = 1

 $E = 2,1 \ 10^5 MPa$ (Pour tout type d'acier de construction métallique)

Charges:

Charpente:

Poids de la couverture :	0,35	kN/m²
Poids du flocage en isolation :	0,35	kN/m²
 Poids du faux plafond type Écophon accroché aux pannes : 	0,2	kN/m²
 Poids des charges suspendues à la charpente (charges permanentes) : 	0,06	kN/m²
 Charge climatique due à la neige (Région A1 Altitude ≤200 m) : 	0,35	kN/m²
 Vent horizontal sur façade et pignon (zone 2 ; k_s=1) : 	0,60	kN/m²
Charge d'entretien (sur toute la surface du toit : pour simplifier) :	1	kN/m ²

Structure en béton armé (B.A.):

Poids volumique du béton armé :
 25 kN/m³

Pièces intérieures :

	0.104.100		
•	Faux plafond type Écophon en haut de chaque niveau :	0,2	kN/m^2
•	Résine époxy de sol type Soloplast coloris gris clair :	0,1	kN/m²
•	Charges d'exploitation pour bureau, cuisine et circulation :	2,5	kN/m²
•	Cloisons légères de distribution (sur l'ensemble des dalles intérieures)		
	\Rightarrow Charge d'exploitation supplémentaire /m 2 de plancher :	0,5	kN/m^2

Toiture terrasse accessible:

•	Étanchéité + isolation :	0,15	kN/m ²
•	Dalle sur plots :	1,5	kN/m ²
•	Charges d'exploitation :	3,5	kN/m ²

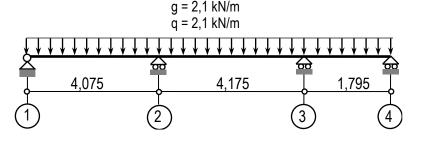
Toiture terrasse végétalisée :

•	Etancheite + isolation + complexe drainant :	0,50	kN/m²
•	Végétalisation type Sopranature :	2	kN/m ²
•	Charges d'exploitation :	1,5	kN/m²

BTS BÂTIMENT	SESSION 2019	
E41 - Dimensionnement et vérification d'ouvrages	Code: BTE4DVO	Page 3 sur 18

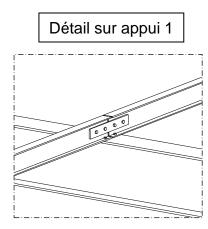
TRAVAIL DEMANDÉ

<u>ÉTUDE 1</u> – Vérification d'une panne courante en IPE 140 (voir : DT2 ; DT4 ; DT5 ; DT7 et DT8).


Cette étude a pour but de vérifier que les pannes, IPE 140 choisies par le bureau d'études structure (B.E.T.), respectent la condition de flèche maximale.

Charges à prendre en compte pour cette étude : voir page 3/18 + poids propre de la panne.

- **Q1**: Après avoir déterminé à l'aide du plan de charpente (DT4; DT5), la surface de toiture reprise par un mètre de panne, déterminer les valeurs des charges à prendre en compte pour le calcul d'une panne, soit :
 - g (permanente) en kN/m, s (neige) en kN/m, q (entretien) en kN/m.


La suite de l'étude sera menée en ne prenant en compte que q et q.

On donne le schéma mécanique ci-dessous, dont l'objectif est de déterminer la flèche maximale de la travée 1-2.

Nota Bene : L'appui 3 est sur la file B1

- **Q2**: Établir les cas de charges (aux ELS) permettant de calculer:
 - a/La flèche maximale dans la travée 2-3
 - b/La flèche maximale dans la travée 1-2
- **Q3 :** En visualisant le détail de liaison entre les deux pannes sur l'appui 1, justifier la modélisation de cette liaison adoptée par le projeteur. En d'autres termes, pourquoi n'a-t-il pas tenu compte de la continuité avec la panne suivante ?

L'étude du cas de charge correspondant à la flèche maximale dans la travée 1-2 donne la valeur du moment sur l'appui $2: M_{ser2} = -6,2 \text{ kN.m.}$

Pour simplifier l'étude on adopte la décomposition suivante du schéma mécanique initial en deux systèmes isostatiques, comme indiqué ci-dessous :

- **Q4**: Tracer les diagrammes de M(x) pour chacun des deux systèmes isostatiques. Préciser toutes les valeurs particulières.
- **Q5**: A l'aide du principe de superposition de cas de charges et du théorème de Muller-Breslau, déterminer la flèche au milieu de la travée 1-2 (très proche de la flèche maximale).
- **Q6**: Le maître d'œuvre ayant fixé la flèche maximale autorisée à L/200, conclure.

ÉTUDE 2 – Étude du porte à faux de l'Empannon (voir : DT4 ; DT5 ; DT7 ; DT8)

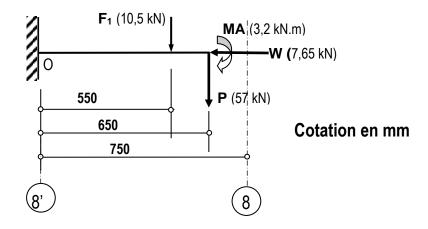
L'empannon repéré (Étude 2 sur le DT4 et DT5) se "prolonge" par une partie en porte à faux (IPE 160 entre les files 8 et 8') permettant d'y accrocher en A l'acrotère en béton armé prévu par l'architecte.

Les liaisons en A et O sont assimilées à des encastrements.

Cette étude a pour objectif de justifier le type de liaison choisi par le projeteur et de vérifier que l'IPE 160 est capable de résister aux différents efforts qu'il doit supporter, notamment à ceux engendrés en A par l'acrotère.

Q7: Démontrer que la positon du C.d.G (noté G) de l'acrotère se situe à 2,63 cm à droite de A et 35,63 cm sous A

Soit : $X_{G} = 2,63$ cm et $Y_{G} = -35,63$ cm (repère A, x, y)


- **Q8**: Que se passerait-il si la liaison A était une articulation ? Justifier la réponse par un schéma sur votre copie en repérant les points A et G.
- **Q9 :** Donner la charge P non pondérée (kN) correspondant au poids propre de l'acrotère que doit supporter l'empannon en A.

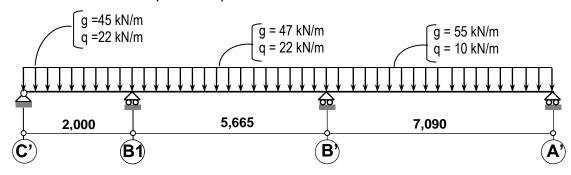
Cotation en mm

BTS BÂTIMENT	SESSION 2019	
E41 - Dimensionnement et vérification d'ouvrages	Code: BTE4DVO	Page 4 sur 18

On considère désormais le schéma mécanique suivant, sous la combinaison d'actions la plus défavorable de l'IPE 160 en console :

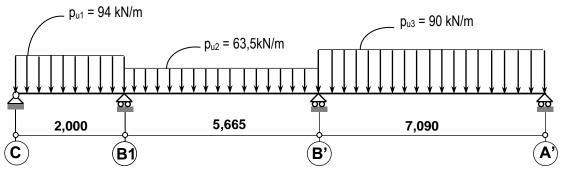
Q10: Déterminer les actions mécaniques de liaisons en O.

Q11: Reporter ces actions sur le schéma mécanique du document réponse **DR** (page 18/18).

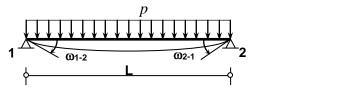

Q12: Tracer l'allure des diagrammes de N(x), V(x) et M(x) l'IPE 160 entre les files 8' et 8, sur le document réponse **DR** (page 18/18). Préciser les valeurs particulières.

Q13: En prenant M_{Ed(max)} = - 46,5 kN.m, et V_{Ed(max)} = 67,5 kN, l'IPE 160 choisi convient-il, tant au moment fléchissant qu'à l'effort tranchant ?

Q14: Justifier, sans calcul, pourquoi, avec l'accord de l'architecte, le BET (Bureau d'Étude Technique) a supprimé l'acrotère B.A au profit d'une structure métallique plus légère ?

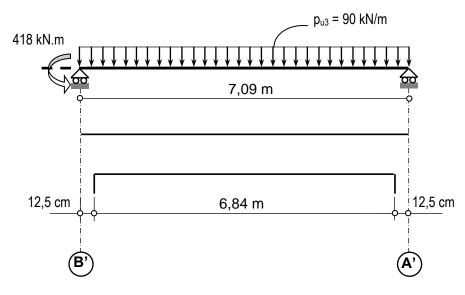

<u>ÉTUDE 3</u> – Étude de la poutre B.A. continue file **8** (OL24, OL25, OL26) (voir : DT6 ; DT9 ; DT10 ; DT11).

Le but de cette étude est de déterminer tous les aciers de la travée B' A'. On donne le schéma mécanique de la poutre file 8.


Q15: Justifier toutes les portées utiles.

On donne le schéma mécanique suivant permettant de déterminer le moment maximal dans la travée de rive B' A'

Q16: En admettant que $M_{B1} = -46,4$ kN.m, calculer à l'aide du théorème des trois moments la valeur du moment sur l'appui B'.


On donne:

$$\omega_{1-2} = -\frac{pL^3}{24EI}$$

$$\omega_{2-1} = \frac{pL^3}{24EI}$$

Le résultat de l'étude précédente a conduit, pour la travée B' A' au schéma mécanique suivant :

- **Q17**: Déterminer les actions mécaniques de contact sur B' et A'.
- **Q18**: Tracer l'allure du diagramme de V(x) et M(x) sur le **DR** (page 18/18), en précisant sur chacun d'eux <u>les valeurs extrêmes</u>, ainsi que les valeurs de V(x) <u>aux nus des appuis</u>. On donne :

FB'y = 378 kN et FA'y = 260,1 kN

Q19: Déterminer la section des aciers longitudinaux nécessaires dans cette travée (B'A'), avec : M_{Ed} = 377 kN.m. (On ne demande pas de vérifier les sections maximale et minimale).

В	TS BÂTIMENT	SESSION 2019	
Ε	41 - Dimensionnement et vérification d'ouvrages	Code : BTE4DVO	Page 5 sur 18

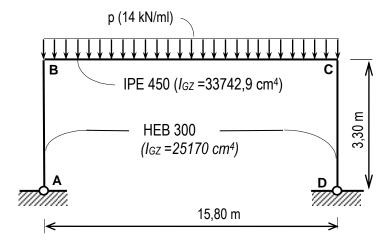
Q20: Choisir les aciers et proposer un croquis légendé de la section sur la copie.

Q21: Déterminer le premier espacement entre les deux premiers cours d'armatures transversales au nu de l'appui B'.

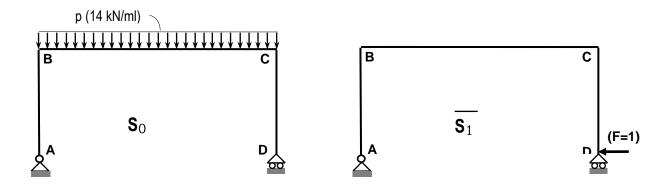
On donne:

Cours d'armature d'effort tranchant composé d'un cadre et d'un étrier en HA 8, $V_{Ed(B')} = 370 \text{ kN}$ (au nu de B').

On admettra, que les armatures d'effort tranchant sont nécessaires, et que la résistance de la bielle de béton est surabondante (ces vérifications ne sont pas demandées).


ÉTUDE 4 – Étude du poteau soutenant la poutre en B' (voir : DT6 ; DT11).

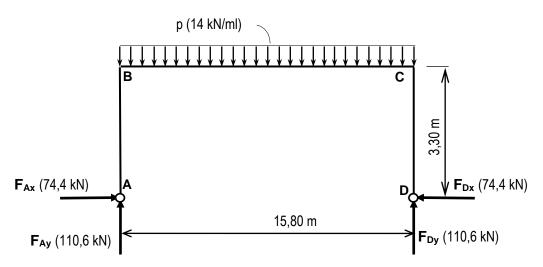
Ce poteau de 25 x 25 et de longueur de flambement l_0 = 3,70 m, fondé sur une semelle en B.A. supporte en pied de poteau une charge pondérée à l'ELU : N_{Ed} = 750 kN


Q22: Déterminer la section des armatures longitudinales de calcul du poteau. Vérifier la section minimale des armatures longitudinale, choisir les barres et proposer un schéma de la section courante (armature transversale en HA 8).

<u>ÉTUDE 5</u> – Étude du portique de contreventement situé file 8' (voir : DT4 ; DT5 ; DT7 ; DT11).

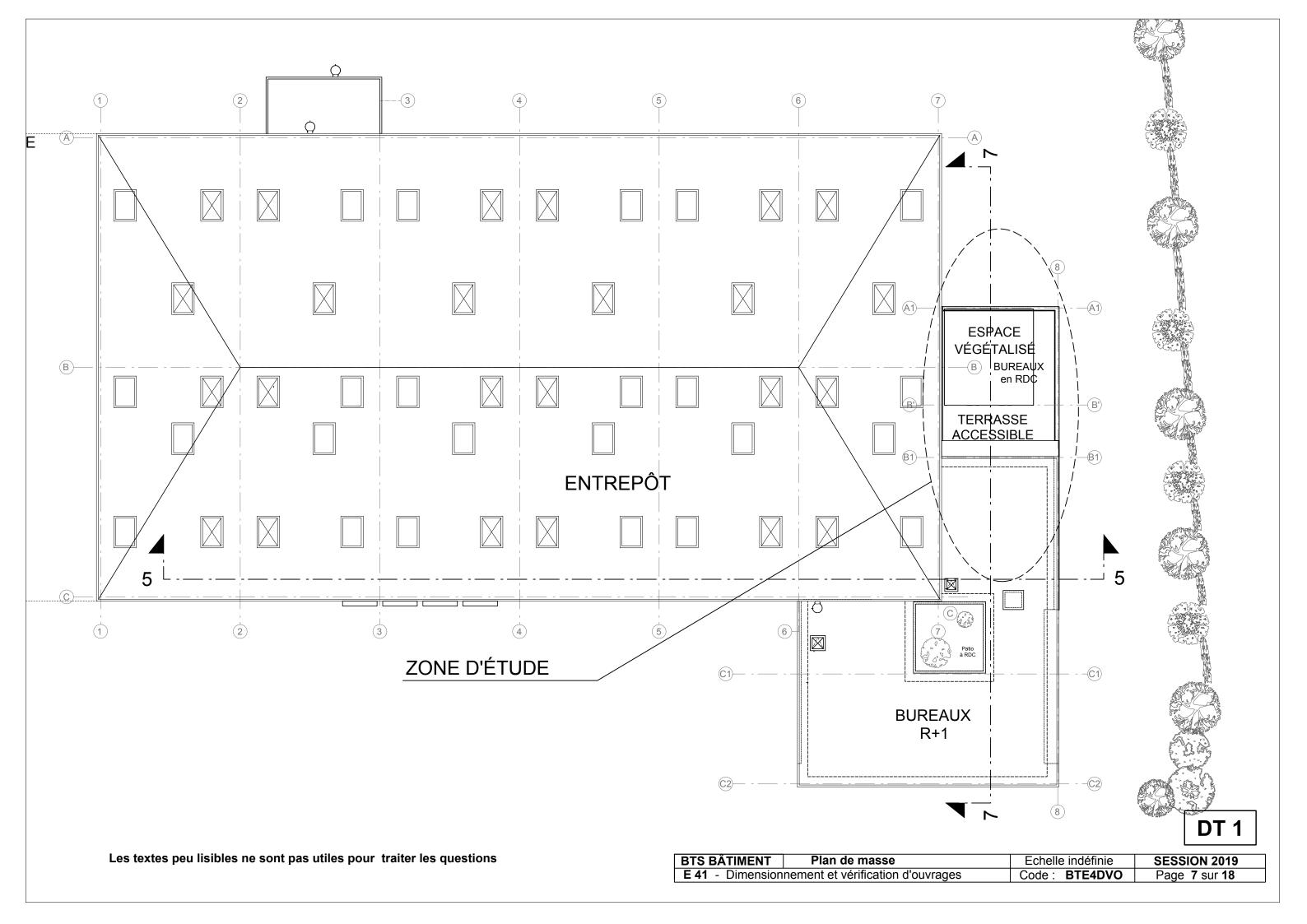
Afin de vérifier la résistance de la poutre (IPE 450) de ce portique, sous l'effet des charges permanentes verticales, on admettra le schéma de calcul suivant aux ELU.

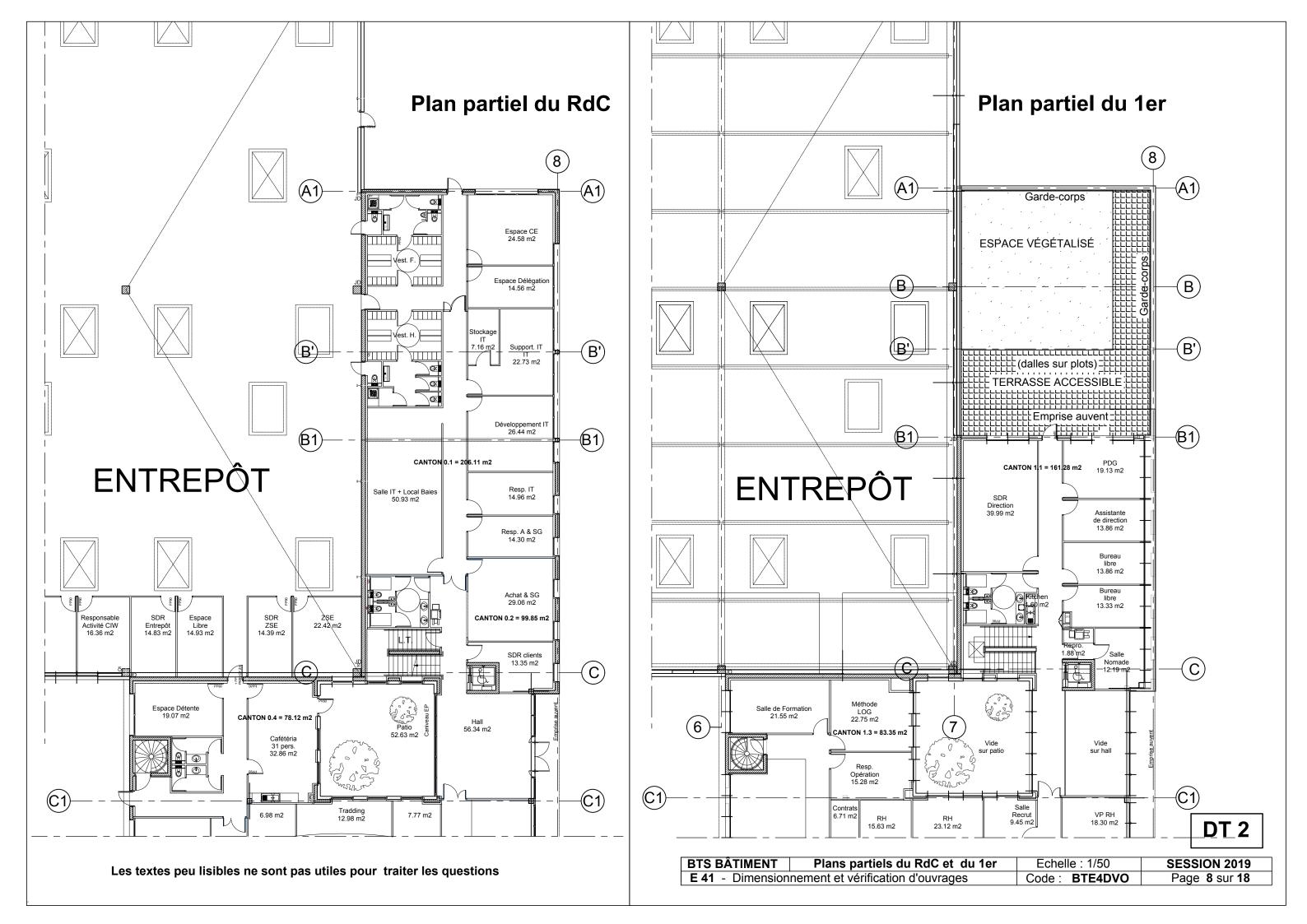
Afin de déterminer les actions mécaniques de liaisons en A et D du système hyperstatique de degré 1, on choisit d'utiliser la méthode des forces ce qui conduit aux deux schémas isostatiques ciaprès :

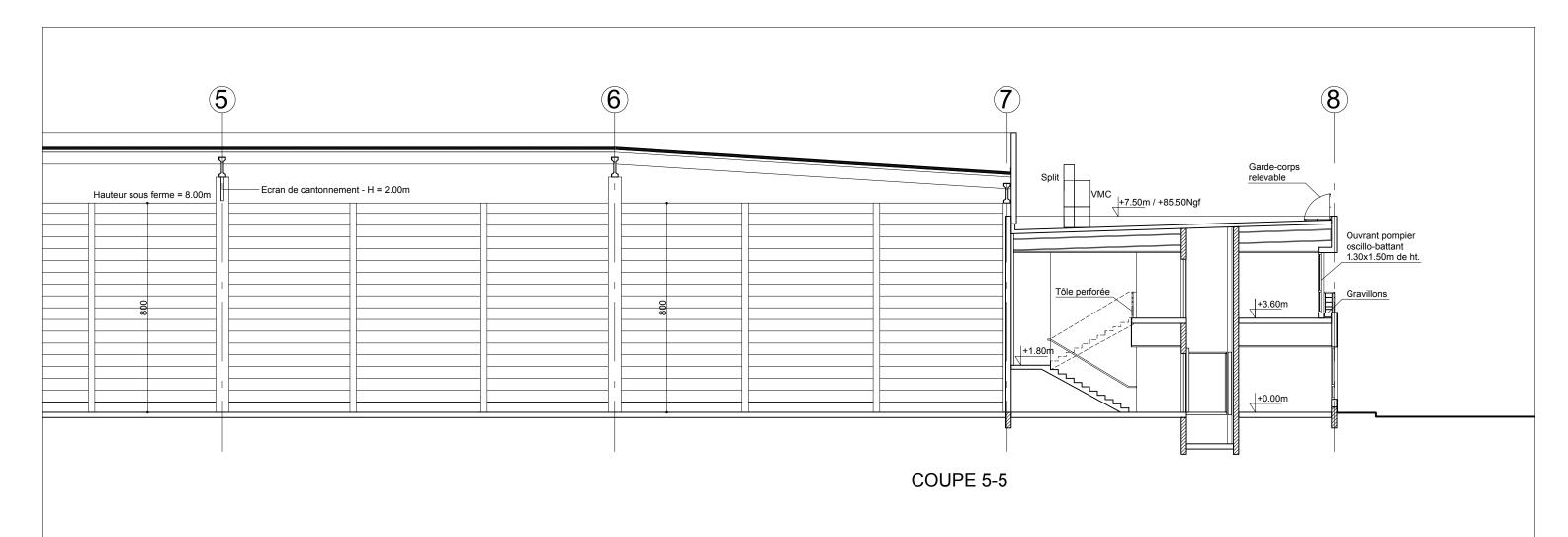

Q23: Pour chacun des schémas précédents, déterminer les actions mécaniques de liaisons en A et D puis tracer les diagrammes de M(x) correspondants.

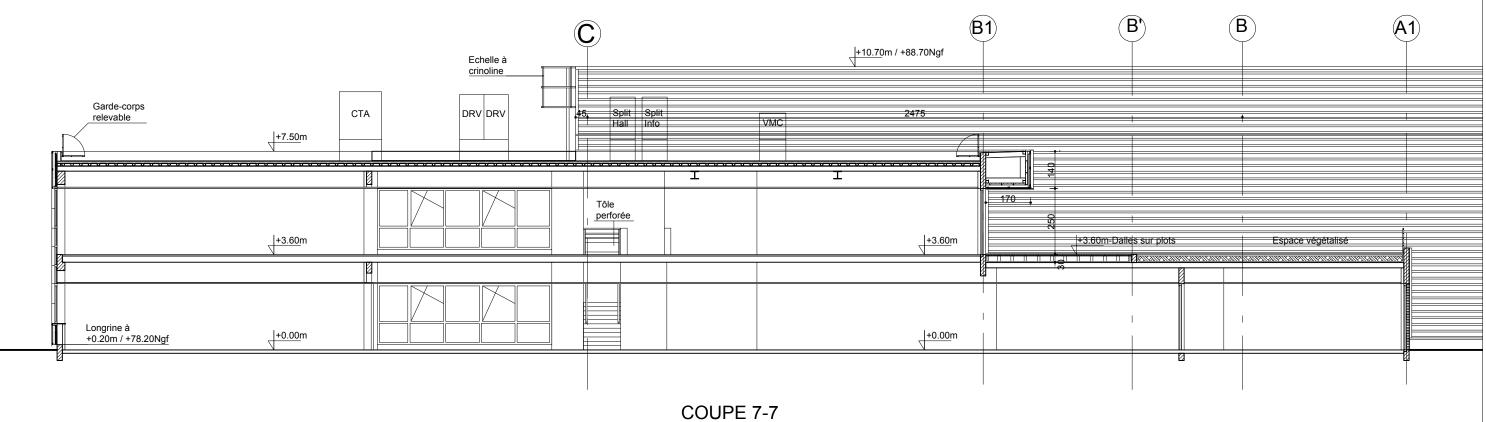
Une étude préalable a permis de déterminer :

$$\Delta_{10}^0 = \frac{-45003841}{F}$$
 (résultat obtenu en utilisant les unités : kN.m, m, m⁴).

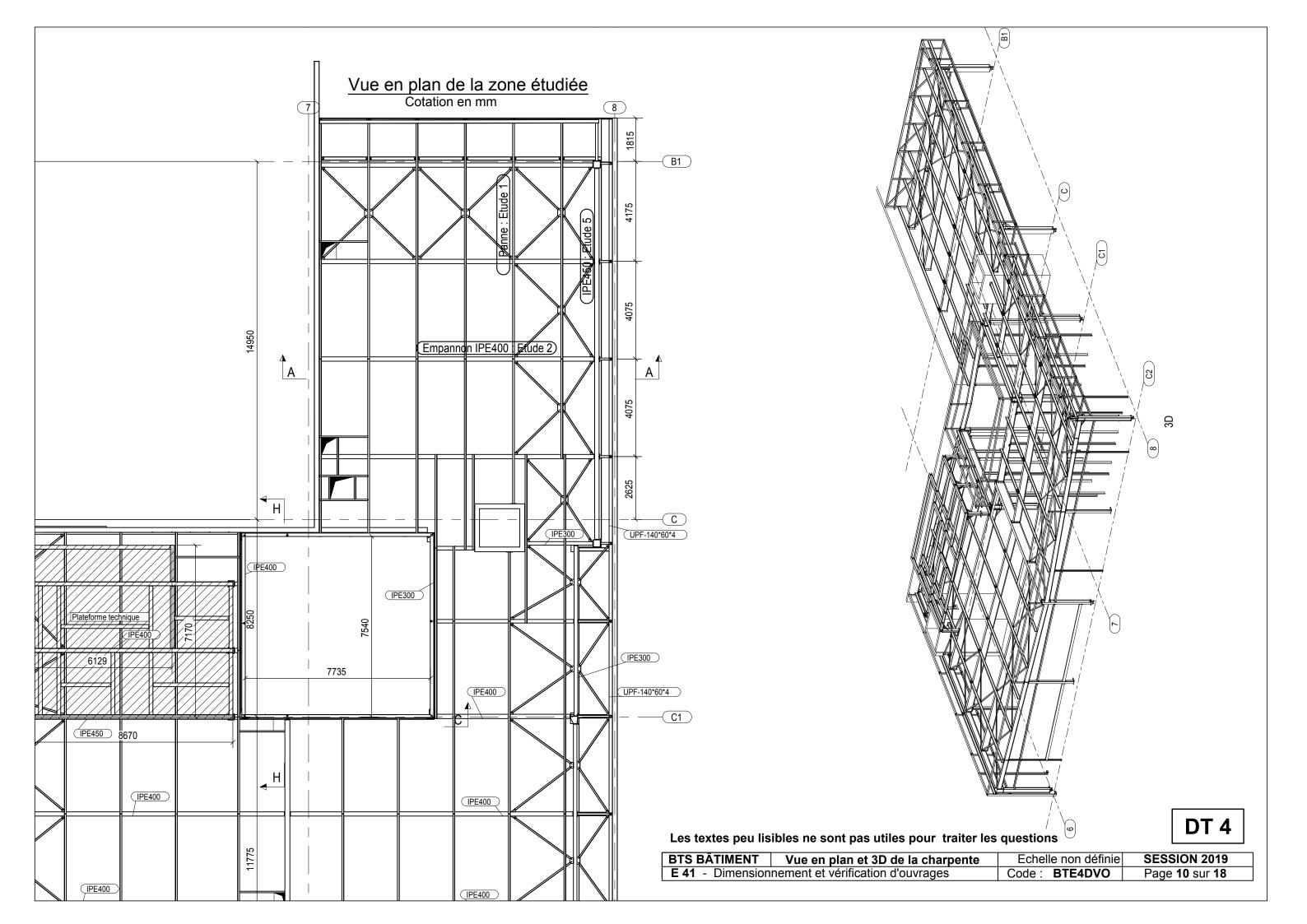

Q24: Déterminer la valeur de δ_{11}^0 puis en déduire les actions mécaniques de liaisons en A et D

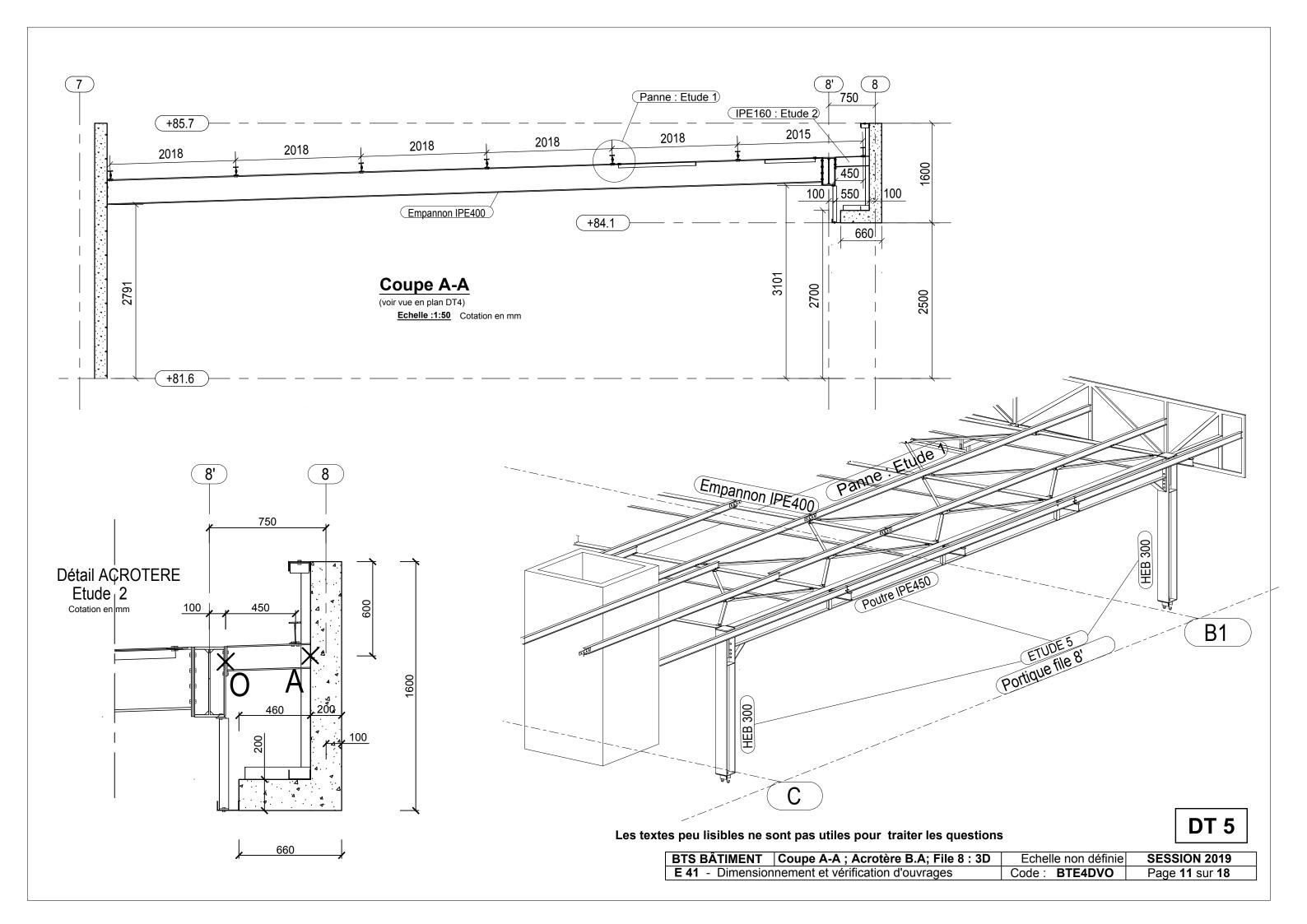

En admettant les résultats suivants en A et D :

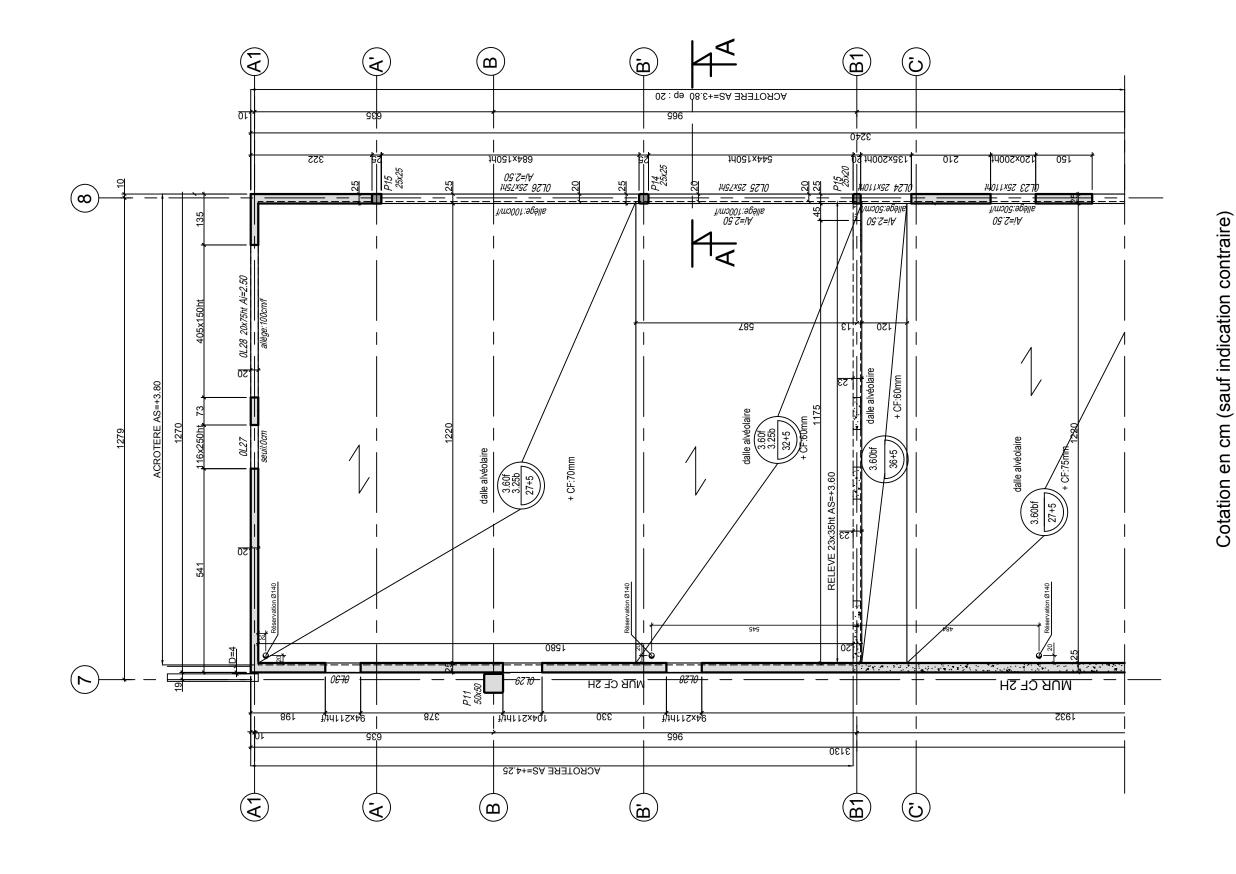



Q25: Tracer l'allure du diagramme de M(x) sur l'ensemble du portique. (Échelle au choix). Préciser les valeurs particulières.

BTS BÂTIMENT	SESSION 2019	
E41 - Dimensionnement et vérification d'ouvrages	Code: BTE4DVO	Page 6 sur 18

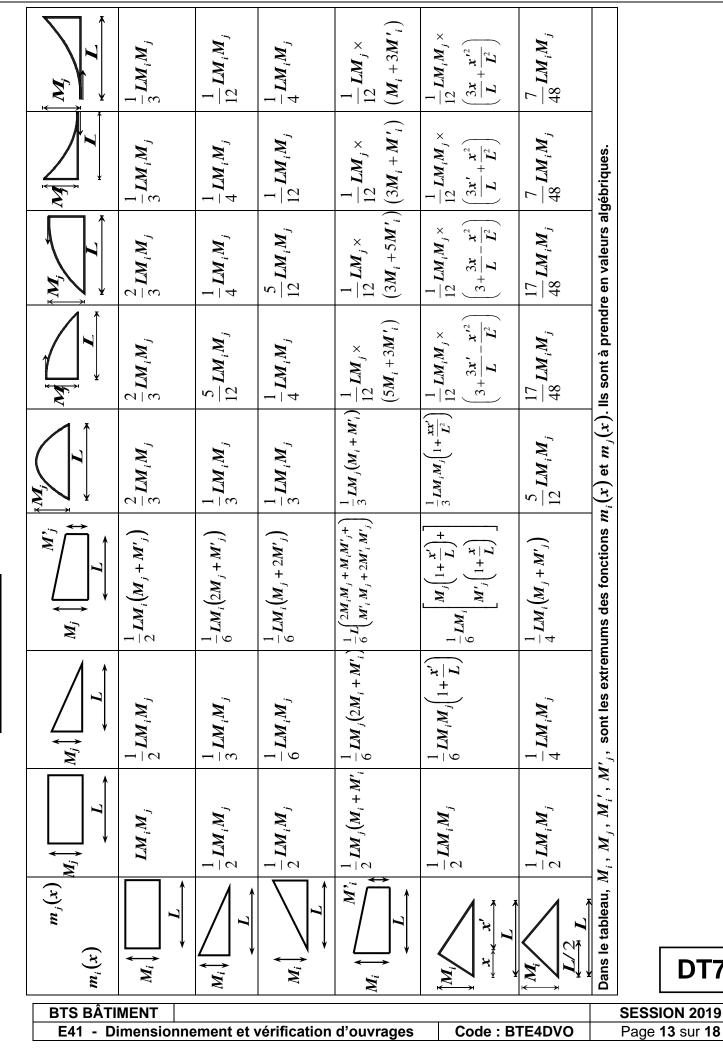





Les textes peu lisibles ne sont pas utiles pour traiter les questions

BTS BÂTIMENTCoupes 5-5 et 7-7Echelle non définieSESSION 2019E 41 - Dimensionnement et vérification d'ouvragesCode : BTE4DVOPage 9 sur 18

Plan de Coffrage partiel du Plancher Haut du R.d.C.


Les textes peu lisibles ne sont pas utiles pour traiter les questions

BTS BÂTIMENT	Plancher Haut partiel du RDC	Echelle : 1/100	SESSION 2019
E 41 - Dimension	nement et vérification d'ouvrages	Code: BTE4DVO	Page 12 sur 18

Caractéristiques des profilés IPE Les axes et désignations sont conformes à l'Eurocode 3. \Rightarrow 9 _

		$A_{\nu y}$	cm ²	5,1	2'9	9,8	10,6	12,8	15,3	18	21,3	14,8	59	33,7	38,7	45,3	51,1	58,3	67,2	76,1	040
	$2 \times S_z$	$W_{pl.z}$	cm³	2,8	9,1	13,6	19,2	26,1	34,6	44,6	58,1	73,9	0,76	125,2	153,7	191,1	229,0	276,4	335,9	400,5	700
		\vec{l}_z	cm	1,05	1,24	1,45	1,65	1,84	2,05	2,24	2,48	2,69	3,02	3,35	3,55	3,79	3,95	4,12	4,30	4,45	22 V
		$W_{el.z}$	cm³	3,69	5,78	8,64	12,30	16,65	22,16	28,46	37,24	47,26	62,19	80,48	98,50	122,73	146,40	176,35	214,09	253,95	001
		ŽI	cm ⁴	8,48	15,91	27,65	44,90	68,28	100,81	142,31	204,81	283,58	419,77	603,62	788,00	1 043,20	1 317,58	1 675,35	2 140,90	2 666,49	1000
\Rightarrow		$A_{\nu z}$	cm ²	3,6	5,1	6,3	9'2	2'6	11,3	14,0	15,9	19,1	22,1	25,7	30,8	35,1	42,7	20,8	59,9	72,3	0
	$2\times S_y$	Module plastique $W_{pt,y}$	cm³	23,2	39,4	60,7	88,3	123,9	166,4	220,6	285,4	366,6	484,0	628,4	804,3	1 019,1	1 307,1	1 701,8	2 194,1	1 390	1000
	Rayon	$\begin{array}{c} \text{de} \\ \text{giration} \\ i_y \end{array}$	cm	3,24	4,07	4,90	5,74	6,58	7,42	8,26	9,11	26'6	11,23	12,46	13,71	14,95	16,55	18,48	20,43	22,35	00.0
↔	Module de	festivation f festivation f fermion f	cm³	20,0	34,2	0'89	21,3	108,7	146,3	194,3	252,0	324,3	428,9	557,1	1,811	9'£06	1 156,4	1 499,7	1 927,9	2 440,6	. 0000
	Moment	$\frac{quadratique}{\mathrm{I}_{\mathrm{y}}}$	cm ⁴	80,1	171,0	317,8	541,2	869,3	1 317,0	1 943,2	2 771,8	3 891,6	5 789,8	8 356,1	11 766,9	16 265,6	23 128,4	33 742,9	48 198,5	67 116,5	1 000 00
	Aire de	section A	cm ²	7,64	10,3	13,2	16,4	20,1	23,9	28,2	33,4	39,1	45,9	53,8	62,6	72,7	84,5	8,86	116	134	(1,
	Masse	par mètre P	kg/m	0'9	8,1	10,4	12,9	15,8	18,8	22,4	26,2	30,7	36,1	42,2	49,1	57,1	66,3	9,77	2,06	106	00,
		Ŀ	mm	2	7	7	7	6	6	12	12	15	15	15	18	18	21	21	21	24	,
		Ţ	mm	5,2	2,7	6,3	6,9	7,4	8,0	8,5	9,2	9,8	10,2	10,7	11,5	12,7	13,5	14,6	16,0	17,2	0
		ţ	mm	3,8	4,1	4,4	4,7	5,0	5,3	5,6	5,9	6,2	9'9	7,1	7,5	8,0	9,8	9,4	10,2	11,1	0
		۵	шш	46	22	64	73	82	91	100	110	120	135	150	160	170	180	190	200	210	000
		٩	mm	80	100	120	140	160	180	200	220	240	270	300	330	360	400	450	200	220	000
		Profil		80	100	120	140	160	180	200	220	240	270	300	330	360	400	450	200	220	

Tableau des intégrales de MOHR : $\int_0^L m_i(x) imes m_j(x) imes dx$

<u>Théorème de Muller-Breslau (autre forme du théorème de Castigliano ou théorème de Bertrand de Fonviolant) :</u>

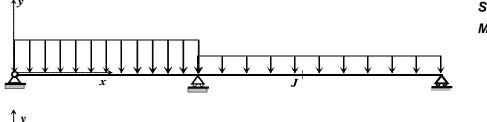
$$\Delta_{j} = \int_{structure} \frac{M \times \overline{M}_{j}}{EI} dx$$

 $m{E}$: Module d'élasticité longitudinale ou module d'Young

I: Moment quadratique

 Δ_i : Déplacement au point j,

 $m{M}$: Moment de flexion, dans la structure étudiée $m{S}$


 \overline{M}_j : Moment de flexion, dans $\left(\overline{S}_j\right)$ qui correspond à la structure initiale $\left(S\right)$ soumise à un facteur sollicitant unité (force unité ou couple unité =1) appliqué au point j.

Dans le cas de structures composées de poutres et de barres bi-articulées :

$$\Delta_{j} = \int_{structure} \frac{M \times \overline{M}_{j}}{EI} dx + \sum_{poutres \ bi-articulées} \frac{N \times \overline{N}_{j}}{EA} L$$

Théorème de Pasternak

Pour déterminer le déplacement en un point J d'une structure hyperstatique suivant une direction donnée, on applique en ce point J dans une de ses structures associées isostatiques (structure virtuelle) suivant la direction souhaitée une charge unité.

Structure réelle (S)Moments de flexion M(x)

Structure isostatique associée (virtuelle)

 $\left(\overline{S}_{J}^{\,0}
ight)$

Moments de flexion $\overline{M}_{J}^{0}(x)$

$$\Delta_{j} = \int_{\text{obstrature}} \frac{M(x) \times \overline{M}_{j}^{0}(x)}{EI} dx$$

M(x) : représente le moment fléchissant dans la structure réelle.

 \overline{M}_j^0 : représente le moment fléchissant dans la structure isostatique associée soumise à un facteur sollicitant unité (= 1) appliqué au point J .

Dans le cas de structures composées de poutres et de barres bi-articulées :

$$\Delta_{j} = \int_{structure} \frac{M \times \overline{M}_{j}^{0}}{EI} dx + \sum_{poutres \ bi-articul\acute{e}es} \frac{N \times \overline{N}_{j}^{0}}{EA} L$$

Flexion simple : Moment fléchissant et effort tranchant (M et V) vérification simplifiée :

Pour le moment de flexion :

On doit vérifier :

 $M_{Ed} \leq M_{c,Rd}$

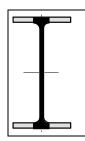
où $oldsymbol{M}_{Ed}$ = Moment fléchissant (agissant) de calcul sollicitant la section droite à l'ELU ;

 $M_{c,Rd}$ = Résistance de calcul à la flexion de la section à l'ELU.

pour une section de classe 1 ou 2	pour une section de classe 3
$oldsymbol{M}_{c,Rd} = oldsymbol{M}_{pl,Rd}$ (moment résistant plastique)	$oldsymbol{M}_{c,Rd} = oldsymbol{M}_{el,Rd}$ (moment résistant élastique)
$oldsymbol{M}_{pl,Rd} = oldsymbol{W}_{pl} imes rac{oldsymbol{f}_y}{oldsymbol{\gamma}_{M0}}$	$oldsymbol{M}_{el,Rd} = oldsymbol{W}_{el,min} imes rac{oldsymbol{f}_y}{oldsymbol{\gamma}_{M0}}$

Pour l'effort tranchant

On doit vérifier :
$$\frac{V_{Ed}}{V_{c,Rd}} \le 1,0$$


Calcul plastique
$$V_{c,Rd} = V_{pl.Rd} = A_v \frac{1}{\sqrt{3}} \frac{f_y}{\gamma_{M0}} = 0.58 A_v \frac{f_y}{\gamma_{M0}}$$

οù

 $V_{{\it Ed}}~$: effort tranchant (agissant) de calcul à L'E.L.U. ;

 $oldsymbol{V}_{pl.Rd}$: effort tranchant résistant à L'E.L.U. ;

 $A_{_{\scriptscriptstyle V}}$: aire de cisaillement donnée dans les catalogues des caractéristiques des profilés.

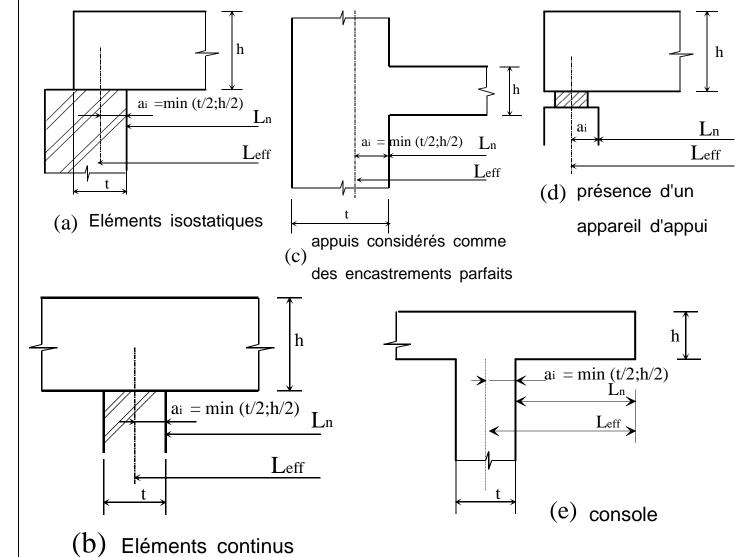
Laminés marchands :

Les valeurs de l'aire plastifiée (A _v) sont données dans les tableaux de caractéristiques des profilés.

<u>Profilés Reconstitués Soudés :</u>
Pour les P.R.S., la valeur de A_v est celle de l'âme seule

BTS BÂTIMENT		SESSION 2019
E41 - Dimensionnement et vérification d'ouvrages	Code : BTE4DVO	Page 14 sur 18

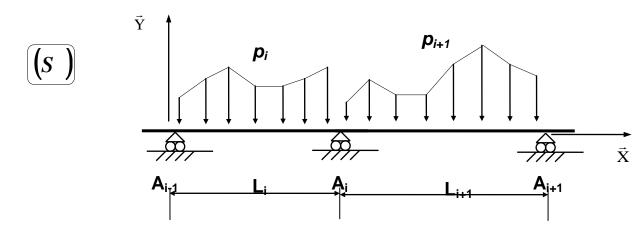
Portées utiles (de calcul) des poutres et dalles dans les bâtiments

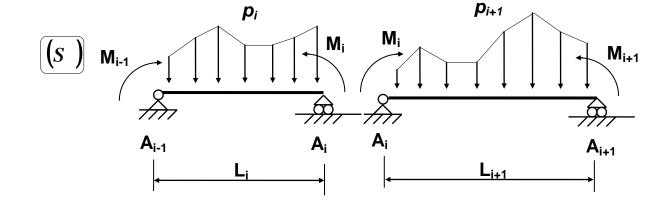

Différents cas sont envisagés :

- a) éléments isostatiques
- b) éléments continus
- c) Appuis considérés comme des encastrements $Avec l_n$: distance libre entre les nus d'appuis.
- d) Présence d'un appareil d'appui
- e) Console

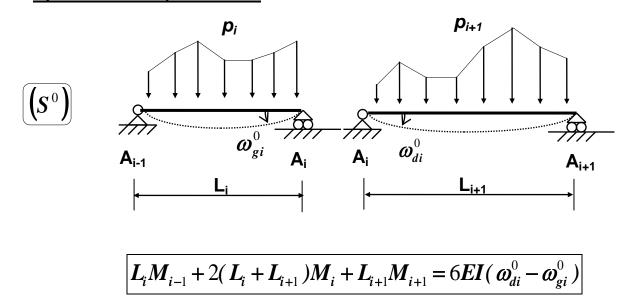
La portée utile $l_{\it eff}$ d'un élément peut être calculée de la manière suivante ; $l_{\it eff}=l_{\it n}+a_{\it 1}+a_{\it 2}$ {5.8 }

Avec l_n : distance libre entre les nus d'appuis Les valeurs a_1 et a_2 à chaque extrémité de la portée, peuvent être déterminées à partir des valeurs correspondantes a_i de la figure 5.4.


Figure 5.4 : Détermination de la portée de calcul $L_{\rm eff}$ d'après l'expression 2.15, pour différents cas d'appuis.



Théorème des 3 moments (formule de Clapeyron) :


Hypothèses:

El = constante sur l'ensemble de la poutre, en l'absence de dénivellations d'appuis.

Système isostatique associé:

BTS BÂTIMENT		SESSION 2019
E41 - Dimensionnement et vérification d'ouvrages	Code : BTE4DVO	Page 15 sur 18

Organigramme de calcul des armatures longitudinales en flexion simple, section rectangulaire:

Données

Classe structurale: S4

Environnement : Classe d'exposition X..

 b_w ; h

béton C../.. f_{ck}

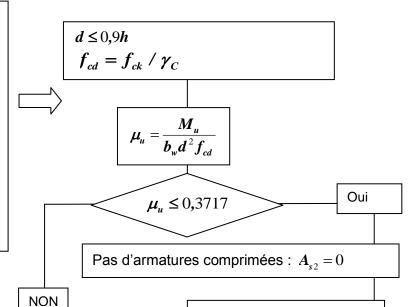

acier B500 classe B $f_{vk} = 500 MPa$

diagramme élasto-plastique parfait

$$f_{yd} = \frac{f_{yk}}{\gamma_S} = \frac{500}{1,15} = 435$$
 MPa

 $p_{y} = 1.35g + 1.5q \ kN/m$

moment de flexion ELU $M_{Ed} = M_{u}$

Les armatures comprimées sont conseillées, car les aciers seraient mal utilisés. Si les armatures comprimées sont prises en compte, elles seront alors maintenues par des armatures transversales : $s \leq 15\phi$.

$$\alpha_u = 1,25(1-\sqrt{1-2\mu_u})$$

$$z_u = d(1-0, 4\alpha_u)$$

$$A_{s1} = \frac{0.8\alpha_u b_w df_{cd}}{f_{yd}}$$

$$A_{s1} = \frac{M_u}{z_u f_{yd}}$$

$$\rho_{s1} = \frac{A_{s1}}{b_w d} = 0.8\alpha_u \frac{f_{cd}}{f_{yd}}$$

Sections minimale et maximale d'armatures longitudinales tendues :

$$A_{s1} > A_{s,min} = max \left[0.26 \frac{f_{ctm}}{f_{yk}} b_w d ; 0.0013 b_w d \right]$$

 $A_{\rm s1}$ < 0,04 A_c avec A_c aire de la section droite de béton

Équation alternative du bras de levier

$$z_u = d(1-0, 4\alpha_u) = d\frac{(1+\sqrt{1-2\mu_u})}{2}$$

Il faut déterminer la hauteur utile réelle $d_{r\'eelle}$, celle-ci doit être supérieure à la valeur forfaitaire considérée.

Organigramme simplifié de calcul des armatures d'effort tranchant en flexion simple:

Données : Classe structurale : **S**4

Environnement: Classe d'exposition X...

I. Béton
$$C../..$$
; $f_{ck}(MPa)$ $f_{cd} = \frac{f_{ck}}{\gamma_{ck}}$

d; z inconnu $\Rightarrow z = 0.9d$

 $b_{...}$ plus petite largeur de la section droite dans la zone tendue

1.
$$v_1 = 0.6 \left[1 - \frac{f_{ck}^{(MPa)}}{250} \right] \qquad v_1 f_{cd}$$

I. Acier B500 classe B $f_{vk} = 500 MPa$

1.
$$f_{ywd} = \frac{f_{ywk}}{\gamma_S} = \frac{500}{1,15} = 435 \text{ MPa}$$

Effort tranchant de calcul $V_{\scriptscriptstyle Ed}$

 $V_{Ed} \leq V_{Rd max}$ non La résistance des bielles est surabondante

$$V_{Rd,s} = \frac{A_{sw}}{s} z f_{ywd} \cot \theta$$
 (6.8)

On se fixe $\cot \theta = 1$: $V_{Ed} \leq \frac{A_{sw}}{c} z f_{ywd} \Rightarrow \frac{A_{sw}}{s} \geq \frac{V_{Ed}}{z f}$

Choix de la section d'acier A_{cw} ;

Calcul des espacements avec : $s \leq \frac{A_{sw}zf_{ywd}}{V}$

$$s \leq min \left[\frac{A_{sw} z f_{ywd}}{V_{Ed}} ; \frac{A_{sw}}{b_{w} \rho_{w,min}} ; s_{l,max} \right]$$

L'angle $\theta = 45^{\circ}$ des bielles ne peut pas être augmenté. Il faut redimensionner le coffrage

Dispositions constructives Le taux d'armatures d'effort tranchant est

vérification de la compression des bielles

noté :
$$ho_w = rac{A_{sw}}{b_w s}$$

$$ho_{w} \ge
ho_{w,min} = rac{0.08\sqrt{f_{ck}}}{f_{yk}}$$
 {9.5N}

$$s \leq s_{l,max}$$
$$s_{t} \leq s_{t,max}$$

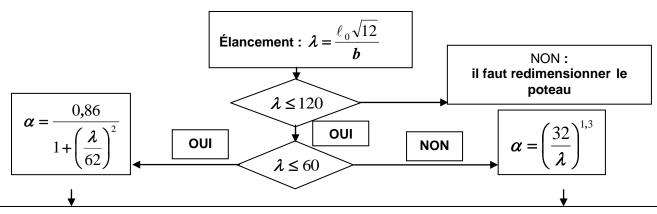
 $s_{l,max}$: Espacement longitudinal maximal entre les cours d'armatures d'effort tranchant

si h > 250mm alors $s_{l,max} = 0.75d$ sinon $s_{l,max} = 0.90d$

 $s_{t,max}$: Espacement transversal maximal des brins verticaux dans une série de cadres, étriers ou épingles.

si h > 250mm alors $s_{t,max} = inf(0.75d.600mm)$ sinon $s_{t,max} = 0.90d$

$$k = min \left[1 + \sqrt{\frac{200}{d^{(mm)}}}; 2 \right]; C_{Rd,c} = \frac{0.18}{\gamma_C};$$
 Pourcentage ρ_l d'acier longitudinal de flexion : $\rho_l = \frac{A_{sl}}{b_w d} \le 0.02$


BTS BÂTIMENT			SESSION 2019
E41 - Dimensionne	ment et vérification d'ouvrages	Code : BTE4DVO	Page 16 sur 18

Organigramme poteaux rectangulaires

Données: catégorie de durée d'utilisation de projet: 4; Classe d'exposition X ... donnant un enrobage nominal c_{nom}

- $N_{\it Ed}$, effort normal centré aux ELU
- A_c , aire du béton $b \times h$, avec $b \le h$ (ou b en mètre, correspondant au sens du flambement)
- Enrobage relatif $\delta = \frac{d'}{h}$ avec $d' = c_{nom} + \phi_t + \frac{\phi_l}{2}$

- Classe du béton C ../.. donnant f_{ck} et $f_{cd} = \frac{f_{ck}}{1.5}$ (âge du béton > 28 jours)
- Acier B500 donnant f_{vk} = 500 MPa et $f_{vd} = f_{vk}/1,15 = 434,8$ *MPa*
- Longueur efficace (ou de flambement) notée ℓ_0 = longueur libre du poteau notée l

$$N_{Ed} \leq N_{Rd}$$
 et $N_{Rd} = \alpha k_h \Big[A_c f_{cd} + A_s f_{yd} \Big]$ ou $N_{Rd} = \alpha k_h A_c \Big[f_{cd} + \rho f_{yd} \Big]$

avec
$$\rho = \frac{A_s}{A_c}$$
 et si $b < 0.500$ m alors $k_h = [0.75 + 0.5b^{[m]}][1 - 6\rho\delta]$ sinon $k_h = 1$

La valeur de As est obtenue en résolvant l'équation du 2^e degré suivante :

$$(6\frac{\delta}{A_c}f_{yd})A_s^2 - (f_{yd} - 6\delta f_{cd})A_s + (\frac{N_{Ed}}{K} - A_c f_{cd}) = 0 \quad \text{avec } K = \alpha(0,75+0,5b^{[m]}) \text{ avec } b \text{ en m}$$

En première approximation pour obtenir une valeur approchée de A_s : $N_{Ed}=lpha k_h A_c \left\lceil f_{cd} +
ho f_{yd}
ight
ceil$ avec $k_h = 0.93$

Section minimale des armatures longitudinales

$$A_{s,min} = max \begin{bmatrix} 0.10 \frac{N_{Ed}}{f_{yd}} & ; & 0.002 & A_c \end{bmatrix}$$
 {9.12N} $A_c = \text{aire de la section brute transversale de } f_{yd}$ limite élastique de calcul de l'armature

 A_{c} = aire de la section brute transversale de béton

Le diamètre des barres longitudinales $\phi_l \ge \phi_{l,min} = 8 \ mm$

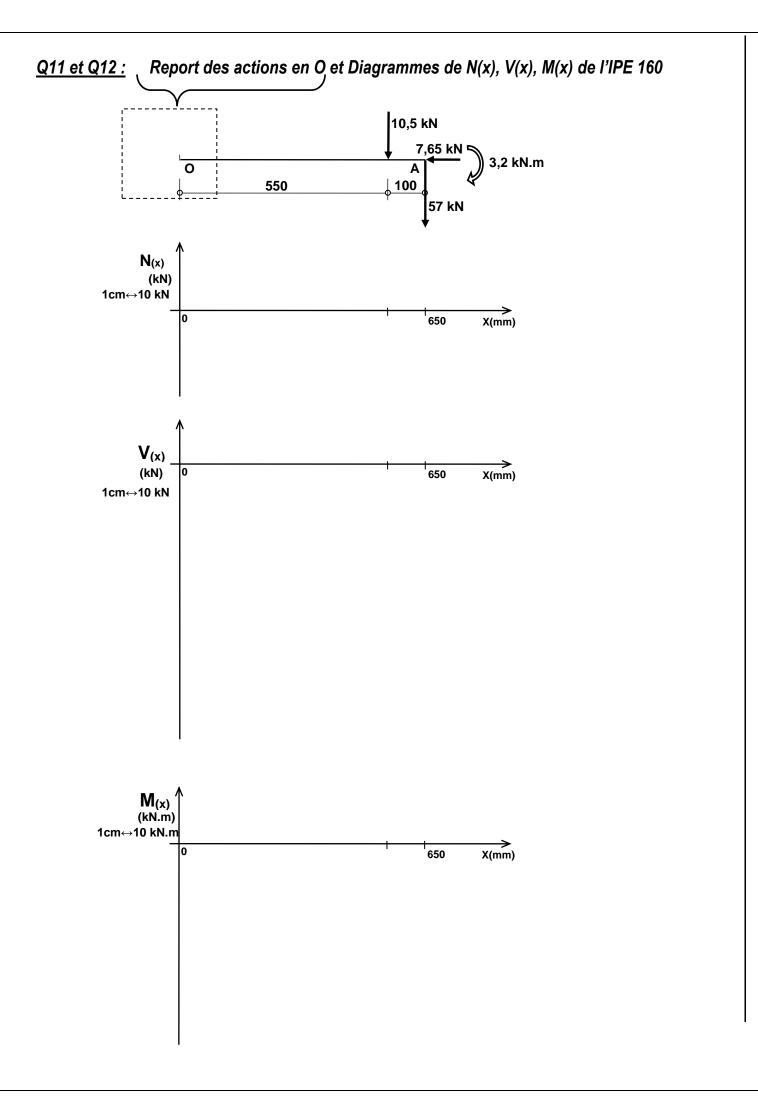
Section maximale des armatures longitudinales

en dehors des zones de recouvrement $A_{s,max} = 0.04A_c$ dans les zones de recouvrement $A_{s,max} = 0.08A_c$

Méthode des forces ou des coupures pour une structure hyperstatique d'ordre 1:

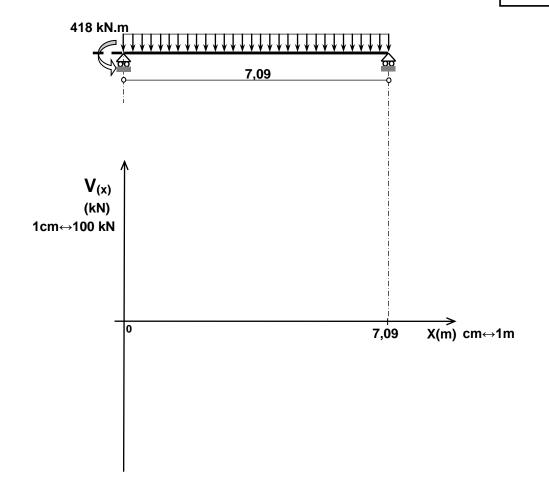
Équation fondamentale pour des structures composées de barres (poutres) sollicitées en flexion:

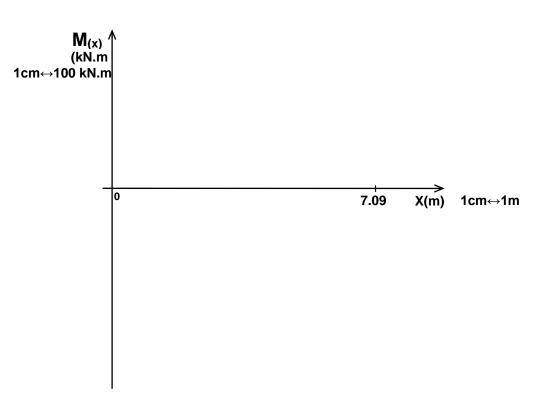
$$\Delta_{10}^0 + X_1 \, \delta_{11}^0 = 0$$


$$\Delta_{10}^{0} = \int_{\text{structure}} \frac{\overline{M}_{1}^{0} \times M_{0}^{0}}{EI} dx \qquad \qquad \delta_{11}^{0} = \int_{\text{structure}} \frac{\left(\overline{M}_{1}^{0}\right)^{2}}{EI} dx$$

L'exposant 0 signifie "dans la structure isostatique associée (S^0) (ou de référence)".

Tableau d'aciers en barres


Diamètre	Poids	Périmètre		Section pour N barres en cm ²									
mm	kg/m	cm	1	2	3	4	5	6	7	8	9	10	
5	0,154	1,57	0,196	0,393	0,589	0,785	0,982	1,18	1,37	1,57	1,77	1,96	
6	0,222	1,88	0,283	0,565	0,848	1,13	1,41	1,70	1,98	2,26	2,54	2,83	
8	0,395	2,51	0,503	1,01	1,51	2,01	2,51	3,02	3,52	4,02	4,52	5,03	
10	0,617	3,14	0,785	1,57	2,36	3,14	3,93	4,71	5,50	6,28	7,07	7,85	
12	0,888	3,77	1,13	2,26	3,39	4,52	5,65	6,79	7,92	9,05	10,18	11,31	
14	1,208	4,40	1,54	3,08	4,62	6,16	7,70	9,24	10,78	12,32	13,85	15,39	
16	1,578	5,03	2,01	4,02	6,03	8,04	10,05	12,06	14,07	16,08	18,10	20,11	
20	2,466	6,28	3,14	6,28	9,42	12,57	15,71	18,85	21,99	25,13	28,27	31,42	
25	3,853	7,85	4,91	9,82	14,73	19,63	24,54	29,45	34,36	39,27	44,18	49,09	
32	6,313	10,05	8,04	16,08	24,13	32,17	40,21	48,25	56,30	64,34	72,38	80,42	
40	9,865	12,57	12,57	25,13	37,70	50,27	62,83	75,40	87,96	100,53	113,10	125,66	


BTS BÂTIMENT		SESSION 2019
E41 - Dimensionnement et vérification d'ouvrages	Code: BTE4DVO	Page 17 sur 18

Q18: Diagrammes de V(x), M(x) de la travée B' A'

Document réponse à rendre avec la copie

DR

BTS BATIMENT	Diagrammes IPE 160 et	Diagrammes IPE 160 et travée B' A'							
E41 - Dimensionn	ement et vérification d'ouvrages	Code : BTE4DVO	Page 18 sur 18						