BREVET DE TECHNICIEN SUPÉRIEUR BÂTIMENT

Épreuve E4 – Étude technique

Sous - épreuve E41
Dimensionnement et vérification d'ouvrages

SESSION 2016

Durée : 4 heures

Coefficient: 2

<u>Matériel autorisé</u>: toutes les calculatrices de poche, y compris les calculatrices programmables alphanumériques ou à écran graphique à condition que le fonctionnement soit autonome et qu'il ne soit pas fait usage d'imprimante (circulaire n°99-186, 16/11/1999).

Tous les documents réponses, même vierges, doivent être rendus avec la copie (pages 22 et 23)

Tout autre matériel est interdit.

Dès que le sujet vous est remis, assurez-vous qu'il est complet. Ce sujet comporte 23 pages numérotées de 1/23 à 23/23

BTS BÂTIMENT		SESSION 2016
Dimensionnement et vérification d'ouvrages – E 41	Code : BTE4DVO	Page 1/23

Pépinière Musicale Contenu du dossier

Page 2 : Présentation de l'ouvrage Page 3 : Caractéristiques des matériaux

Pages 4 à 6 : Travail demandé

Page 7 : DT 1 Plan Architecte du Rez de Chaussée

Page 8 : DT 2 Plan de masse

Page 9 : DT 3 Plan Architecte coupes

Page 10 : DT 4 Plan charpente métallique (en plan)
Page 11 : DT 5 Plan charpente métallique (élévations)

Page 12 : DT 6 Plan charpente métallique (coupes et détails structure)

Page 13 : DT 7 Plan d'exécution du Rez de chaussée

Page 14 : DT 8 Plan d'armatures Po1 et Po2 Page 15 : DT 9 Note de calculs de la charpente

Pages 16 : DT10 Formulaire Eurocode 3

Pages 17 : DT11 Caractéristiques des profilés

Pages 18 : DT12 Formulaire Mécanique Pages 19 : DT13 Formulaire Eurocode 1 Pages 19-20 : DT14 Formulaire Eurocode 2

Pages 21 : DT15 Formulaire Eurocode 2 (suite)

Pages 22 à 23 : DR1 Étude mécanique de la charpente

DR2 Principe d'armatures de poteaux

Barème

Les quatre études sont indépendantes

Étude 1	Conception générale du projet	6 points
Étude 2	Étude mécanique de la charpente	5 points
Étude 3	Vérification du plan d'armatures d'une poutre continue	5 points
Étude 4	Dimensionnement d'un poteau B.A. et principe d'armatures	4 points

Présentation de l'ouvrage Voir l'ensemble du Dossier Technique

L'étude porte sur la construction d'un équipement dédié aux pratiques des musiques actuelles et contemporaines. Le bâtiment à construire, d'une surface totale de plancher de 760 m² environ, comprend 4 studios (dont un studio scène de 200 m² environ, un studio « MAO » Musique Assistée par Ordinateur, un moyen studio et un grand studio), des locaux associés (bureaux, loge, réserves...), un « catering » ainsi que des locaux communs et de logistique. Les espaces sont articulés autour d'un patio central. L'opération porte également sur l'aménagement des espaces extérieurs. Ce projet s'inscrit dans une démarche de développement durable (DT1 à DT3).

La structure principale de ce bâtiment est en béton armé.

Toutes les parties du bâtiment en rez de chaussée sont recouvertes de toitures terrasses végétalisées afin d'intégrer au maximum l'ouvrage dans son environnement.

La salle « Studio Scène » (seule partie visible du chemin) est coiffée par une charpente métallique support d'une couverture double peau en bac acier et du chemin de moufle. Les murs extérieurs de cette salle seront soit recouverts d'une structure bac acier, soit laissés brut de décoffrage (béton matricé avec lasure) (DT4 à DT7).

Les fondations sont constituées de semelles filantes et isolées. Elles reposent sur des barrettes ou des puits en gros béton et sont reliées entre elles par des longrines.

Entrée

Vue du chemin

BTS BÂTIMENT		SESSION 2016
Dimensionnement et vérification d'ouvrages – E 41	Code : BTE4DVO	Page 2/23

<u>CARACTÉRISTIQUES DES MATÉRIAUX UTILISÉS SUR L'OUVRAGE</u>:

Béton Armé

 $\begin{array}{lll} \text{-} & \text{B\'eton arm\'e C25/30} & \text{:} \ f_{ck} = 25 \ \text{MPa} \\ \text{-} & \text{Poids volumique du b\'eton} & \text{:} \ \gamma_{B.A.} = 25,00 \ \text{kN/m}^3 \\ \text{-} & \text{Armature B500B} & \text{:} \ f_{yk} = 500 \ \text{MPa} \end{array}$

- Béton Armé situé à l'extérieur du Bâtiment : Classe d'exposition XC1

- Enrobage des aciers : 30 mm

Charpente Métallique

- S355 Classe 2 limite d'élasticité : $f_y = 355$ MPa - S355 Classe 2 résistance à la traction : $f_u = 490$ MPa - Module d'élasticité longitudinale : E = 210000 MPa

- Coefficient partiel de sécurité : $\gamma_{M0} = 1.00$

CHARGES UNITAIRES:

Charges permanentes

Terrasses inaccessibles type « Pampa » 3,50 kN/m²
 Terrasses inaccessibles type « Protection gravillons » 1,50 kN/m²

Charges d'exploitation

- Toiture terrasse accessible et inaccessible 1,50 kN/m²

Charge de neige

- Région A2 Altitude 360 m (pression normale) : 0,74 kN/m²

BTS BÂTIMENT		SESSION 2016
Dimensionnement et vérification d'ouvrages – E 41	Code : BTE4DVO	Page 3/23

TRAVAIL DEMANDÉ

ÉTUDE 1 : Conception générale du projet

En phase d'appel d'offres, un pré-dimensionnement de la structure a été réalisé. Dans le cadre de cette étude, on demande de valider les sections en reprenant la démarche de calculs d'une partie de celle-ci. Soit le profilé IPE 160 support du système de toiture «GLOBALROOF ». Vous justifierez également l'emploi de certaines parties de cette structure (DT4 à DT6).

1.1 Analyse de la charpente

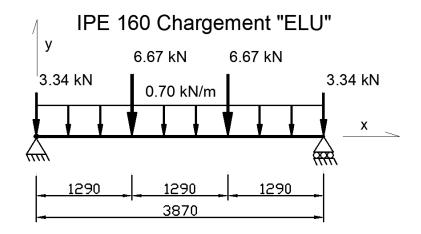
Q1 : Expliquer le rôle des profilés **L100*10** repérés sur la vue en plan de la toiture (DT4).

Q2 : Donner la fonction des profilés **TC70*3** repérés sur l'élévation File C (DT5).

1.2 Étude des bacs aciers de la couverture

Q3 : Proposer un schéma mécanique pour le dimensionnement du bac Hacierco C38 (référence n°6 sur la documentation constructeur). Faire apparaître les liaisons, le type de chargement et les portées.

Q4 : Vérifier que votre hypothèse de modèle mécanique est compatible avec le bac Hacierco C38 en 0,75 mm d'épaisseur.

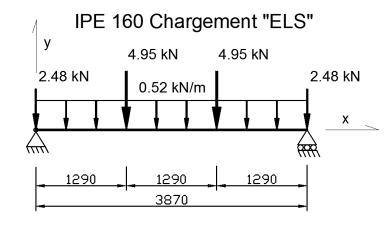

Indiquer sur le Document Réponse (DR1) l'entraxe maximal des pannes autorisé dans ce cas de chargement.

La charge permanente induite par l'étanchéité et l'isolation sur le premier bac est de 30 daN/m².

1.3 Validation du profilé IPE 160 de la charpente

Q5 : A partir du modèle défini ci-dessous pour le profilé IPE 160, tracer sur le DR1, les diagrammes d'efforts tranchants et de moments fléchissants et en déduire les sollicitations maximales.

Le modèle mécanique retenu pour le dimensionnement du profilé est le suivant :



Q6 : Vérifier que la contrainte tangentielle dans la section la plus sollicitée ne soit pas dépassée. Prendre Vmaxi = 8,00 kN.

Q7 : Vérifier que la contrainte normale dans la section la plus sollicitée ne soit pas dépassée. Prendre Mmaxi = 10,00 kN.m.

Q8 : Déterminer à partir du modèle ci-dessous, la flèche à mi-portée du profilé IPE160.

Le modèle mécanique retenu pour la vérification de la flèche est le suivant :

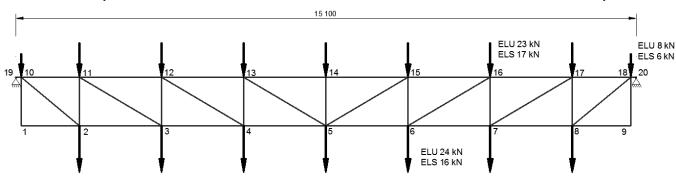
Q9 : Pour ce type de structure, le prescripteur impose une flèche maximale de L/250. Calculer cette flèche maximale.

Conclure sur les résultats obtenus.

Q10 : En s'appuyant sur les résultats des questions 6, 7 et 9, peut-on dire que le profilé IPE160 S355 Classe 2 est bien adapté ?

BTS BÂTIMENT		SESSION 2016
Dimensionnement et vérification d'ouvrages – E 41	Code : BTE4DVO	Page 4/23

ÉTUDE 2 : Étude mécanique de la charpente


Pour cette étude, on vous demande de valider un modèle mécanique et de contrôler les éléments de structure choisis par le projeteur.

Les trois fermes qui supportent la totalité de la couverture, sont ancrées dans les murs.

Elles assurent également le maintien en têtes des murs (DT1 à DT5).

Le modèle mécanique retenu pour le dimensionnement de la ferme n°2 est le suivant :

(Tous les éléments constituants la ferme sont encastrés entre eux)

2.1 Validation du chargement de la ferme n°2

Q11 : Expliquer l'origine des charges apparaissant sur la structure en partie haute et en partie basse de la ferme n°2 (aucun calcul n'est demandé).

2.2 Contrôle de la structure dans sa version définitive

Q12 : A partir de la note de calculs fournie (DT9), on vous demande de repérer sur la structure (DR1), la ou les sections les plus sollicitées :

- dans la traverse supérieure (HEA120),
- dans la traverse inférieure (HEA120).

Justifier votre réponse en expliquant le type de sollicitations agissant sur ces barres

Q13 : Pour un contrôle rapide de la structure, on ne retiendra que les efforts normaux dans la barre (4-5) qui est la plus sollicitée.

L'effort normal agissant dans cette barre est de +535,00 kN.

Vérifier que la contrainte normale dans la section ne soit pas dépassée.

Q14 : Le schéma mécanique retenu, engendre de très fortes sollicitations dues à l'effort tranchant dans les deux barres d'extrémités (barres : 19-10 et 18-20).


L'effort tranchant maximal est de 172,50 kN.

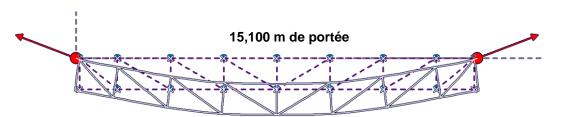
Vérifier que la contrainte tangentielle dans le profilé HEA120 ne soit pas dépassée.

2.3 Étude de la variante de réalisation de la ferme

Dans cette partie, on vous propose de comparer deux solutions pour la réalisation de la ferme. Ici tous **les éléments constituants l'âme de la ferme sont articulés entre eux**. Les membrures supérieures et inférieures sont constituées d'un même profilé.

Le modèle mécanique retenu pour faciliter le montage de la ferme n°2 est le suivant :

Q15 : Repérer sur le document réponse (DR1) les barres tendues et les barres comprimées de l'âme de cette ferme (utiliser deux couleurs distinctes et légender votre réponse).


Q16 : Repérer dans la note de calculs (DT9), les sollicitations maximales dans les barres (4-5) et (10-11), puis comparer pour les deux solutions (base et variante), ces sollicitations maximales.

Les sollicitations pour la solution de base « âme encastrée » sont les suivantes :

Barre 4-5 : Nmax = 535,00 kN, Vmax = 1,09 kN et Mmax = 2,46 kN.mBarre 10-11 : Nmax = 226,20 kN, Vmax = 5,49 kN et Mmax = 6,76 kN.m

Q17 : Calculer la flèche maximale autorisée pour cette structure. Pour ce type de structure, on nous impose une flèche maximale de L/250.

Allure de la déformée

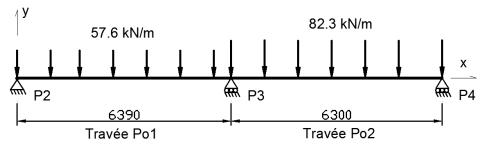
Q18 : Comparer pour la solution de base et la variante, les flèches maximales et conclure sur les résultats obtenus.

Flèche maximale pour la solution entièrement encastrée : 1,84.10⁻² m.

Flèche maximale pour la solution avec membrure articulée : 1,88.10⁻² m.

Q19 : Y a-t'il un intérêt particulier à utiliser une structure complètement encastrée ou partiellement articulée?

BTS BÂTIMENT		SESSION 2016
Dimensionnement et vérification d'ouvrages – E 41	Code : BTE4DVO	Page 5/23


ÉTUDE 3 : Vérification du plan d'armatures d'une poutre

continue

Cette étude est à appréhender en tant que contrôleur d'une étude béton armé.

Pour cela, il faut vérifier, dans un premier temps, des éléments de calculs pris en compte pour le dimensionnement d'une poutre continue en béton armé, puis analyser le plan de ferraillage donné par le logiciel de béton armé (DT7, DT8).

Le modèle mécanique retenu pour l'étude de la poutre continue en béton armé est le suivant :

3.1 Validation du modèle de calcul

Q20 : Justifier la longueur efficace de la travée Po1 (DT14).

Q21 : Vérifier à l'aide d'un schéma coté que la charge unitaire prise en compte par le projeteur pour la travée Po2 à l'ELU est cohérente (vous devez prendre en compte les charges permanentes, d'exploitation et la neige) (DT13).

3.2 Vérification du moment de calcul

Le projeteur a pris une valeur de moment (Med = -350,00 kN.m) pour dimensionner les armatures sur l'appui P3.

Q22 : Vérifier que cette valeur de moment est conforme au schéma mécanique retenu ci-dessus et en utilisant le (DT12).

3.3 Contrôle du plan d'armatures

Q23 : En considérant que les sections d'aciers (DT8) dans les travées soient justes, vérifier la section prolongée en partie base sur l'appui intermédiaire pour la travée Po2.

Si la section n'est pas vérifiée, proposer une modification.

On donne : Ved = 314,90 kN.

Q24 : Justifier la présence ou non de crochets d'ancrage sur l'appui intermédiaire de la travée Po2. A défaut d'un dimensionnement plus précis, on prendra d = 0,9 h.

On donne : Ved = 314,90 kN, Med = -350,00 kN.m

Q25 : Expliquer quels sont les rôles des armatures N°13 et N°15.

ÉTUDE 4 : Dimensionnement d'un poteau en béton armé et principe d'armatures

En tant que projeteur en bureau d'études béton armé, on demande dans cette partie de dimensionner un poteau du rez de chaussée de la partie enterrée, de proposer un plan d'armatures, et élaborer un principe de ferraillage en tête de poteau (DT7).

4.1 Dimensionnement des armatures du poteau P3

Q26 : Calculer la section nécessaire d'armatures longitudinales dans le poteau P3.

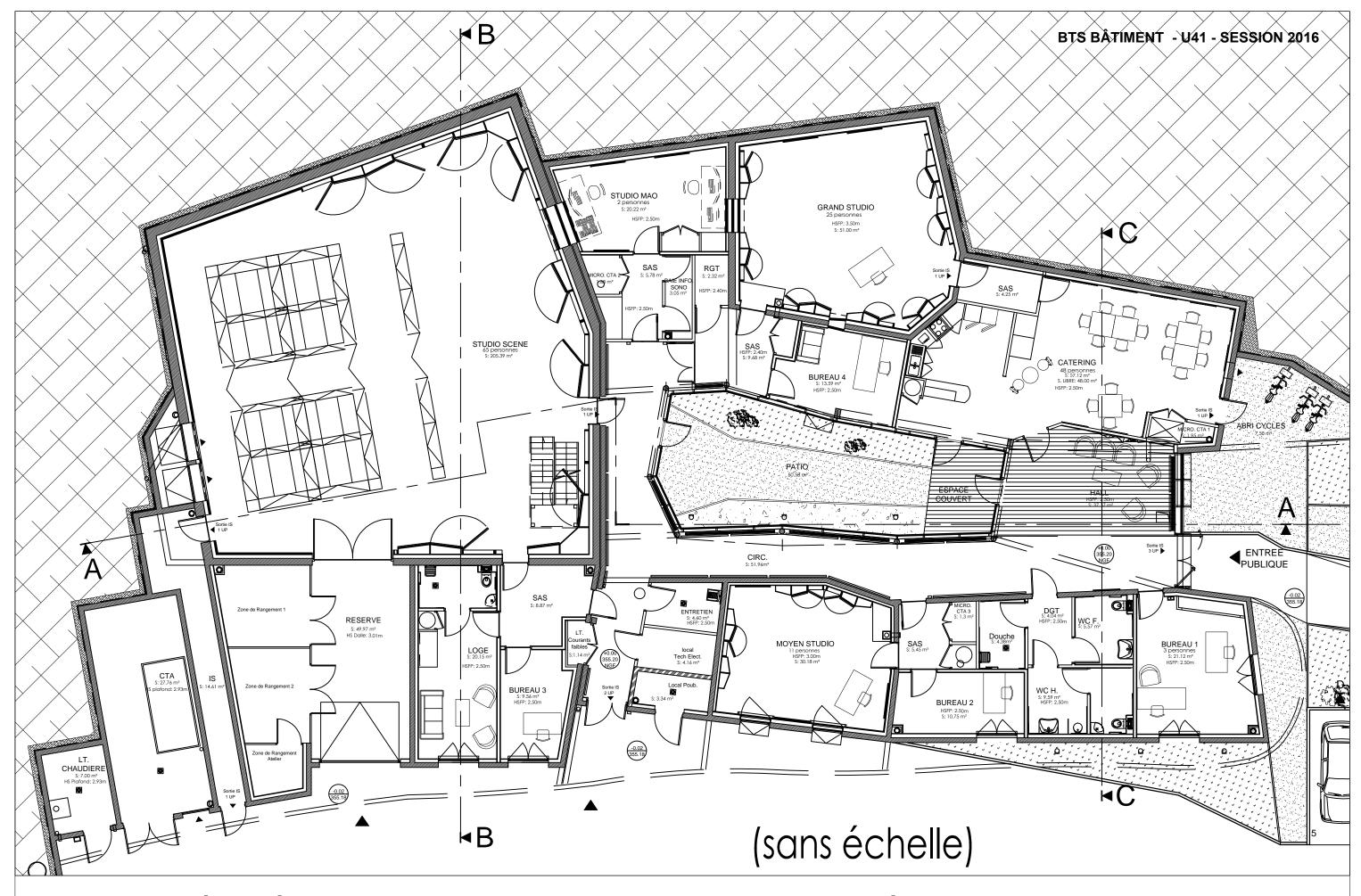
On donne:

- Ned = 553,80 kN
- $L_0 = 3,630 \text{ m}.$

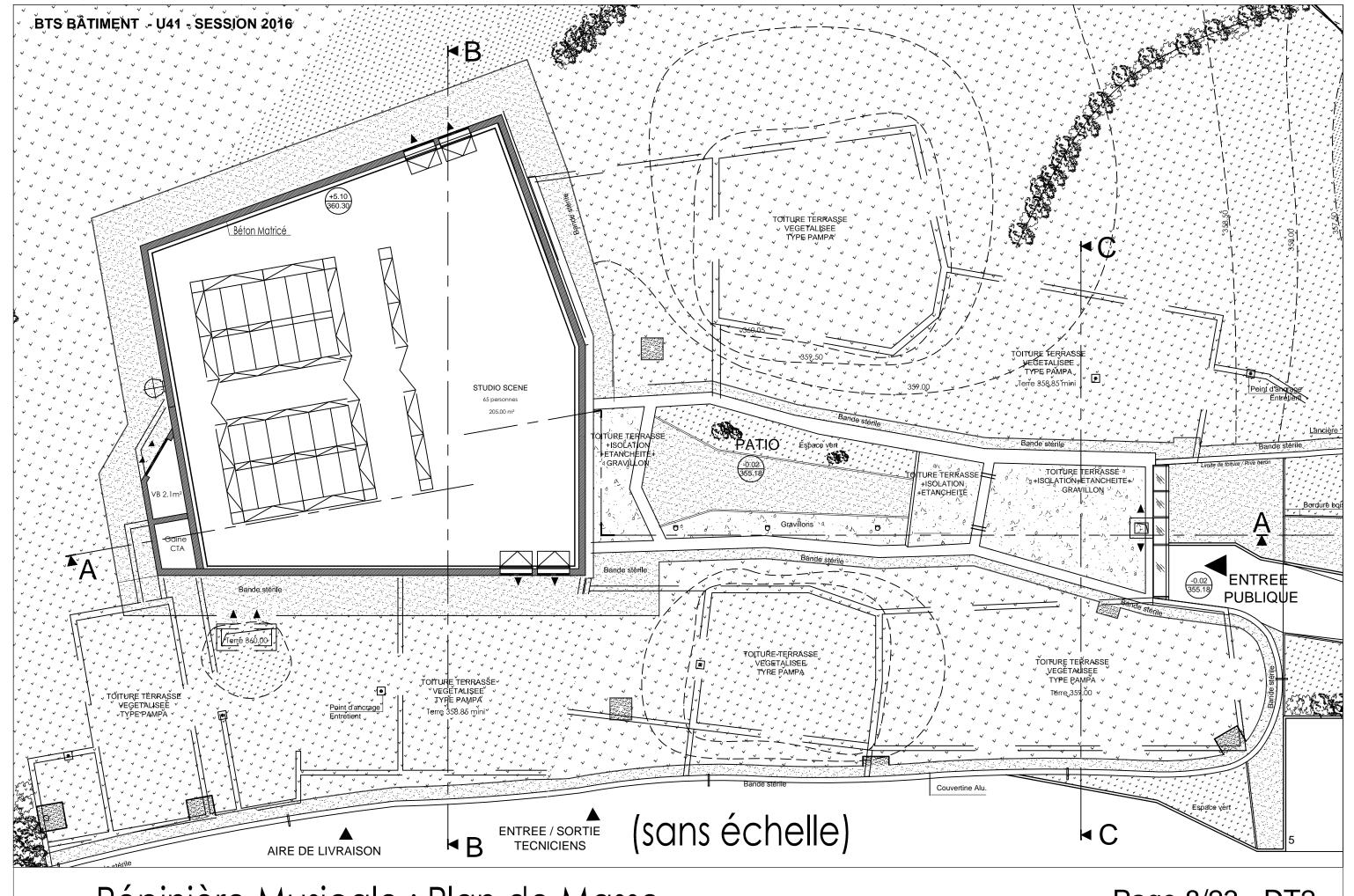
Q27 : Après vérification des sections minimales et maximales d'aciers, choisir les références des armatures longitudinales (prendre comme hypothèse pour traiter cette question, que la section nécessaire calculée est de 10 cm²).

Q28 : Déterminer l'espacement des armatures transversales puis des cours du poteau P3.

Q29 : Compléter la section transversale du poteau en faisant apparaître toutes les armatures. Sur le document réponse (DR2).

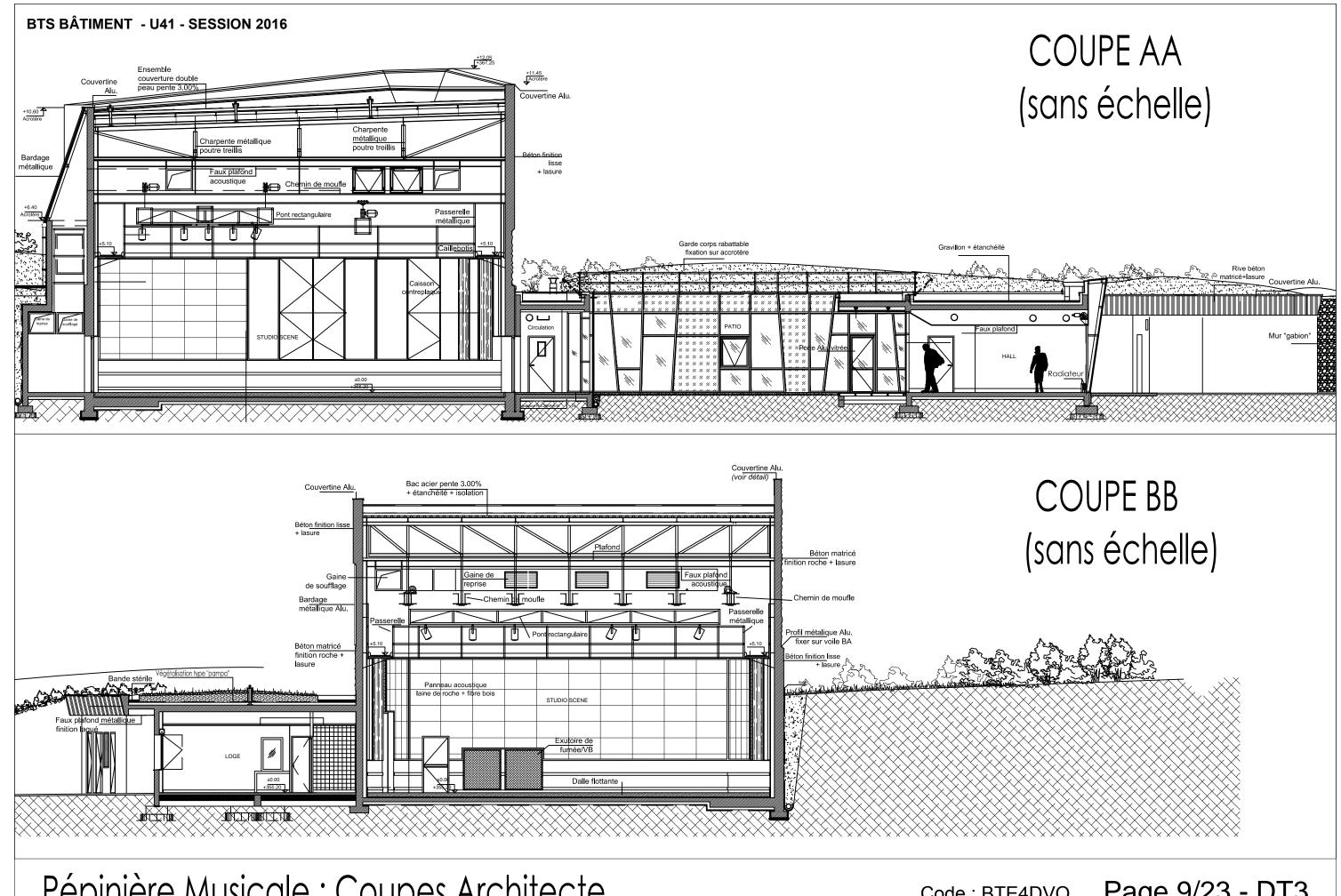

4.2 Analyse d'armatures

Q30 : On donne sur le document réponse (DR2) les armatures des poutres Po1 et Po2.

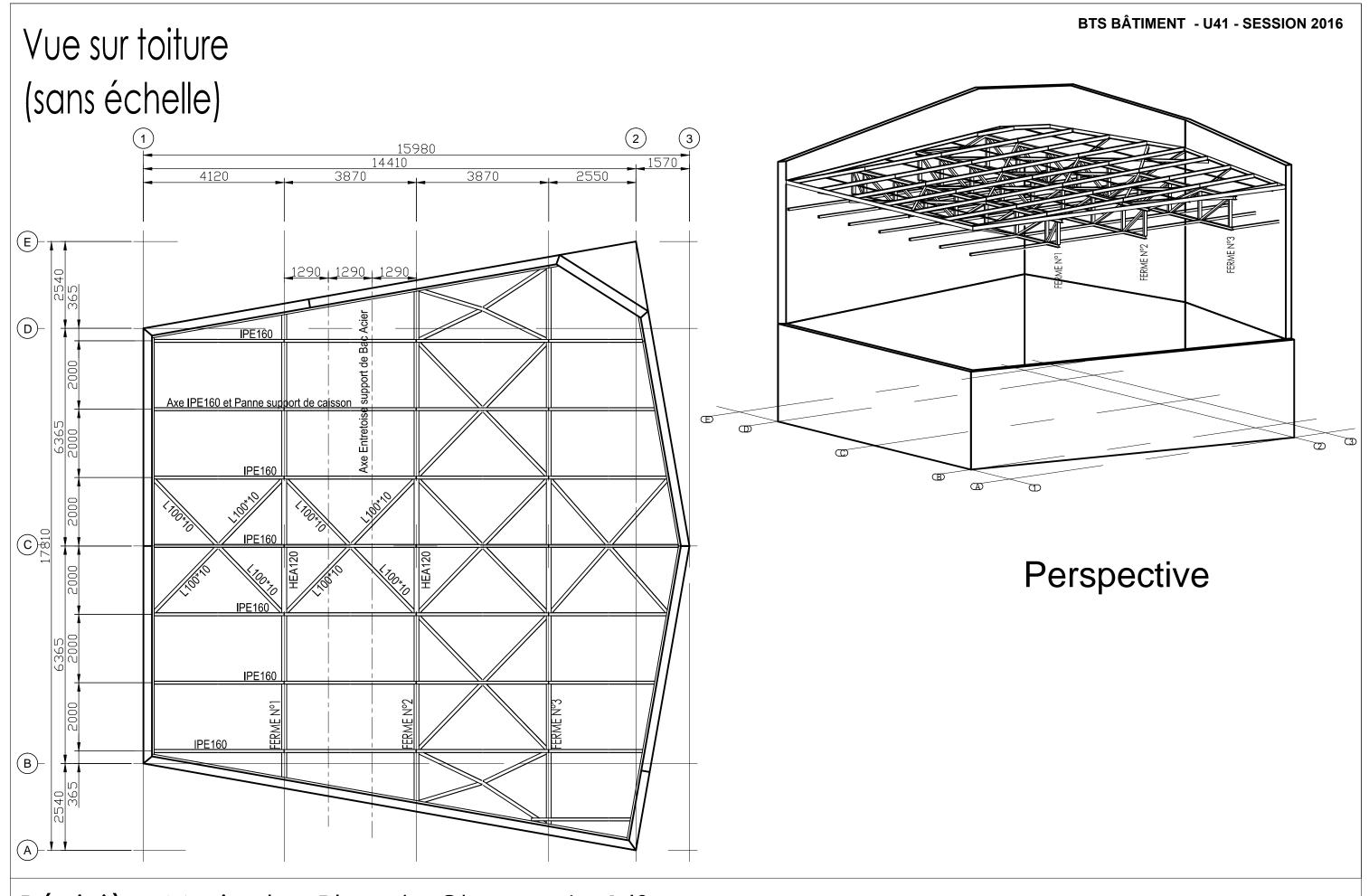

On demande de compléter sur la coupe longitudinale et la coupe B-B, ce principe d'armatures en faisant apparaître les armatures du poteau ainsi que toutes les armatures qui vous sembleront utiles.

Utiliser de préférence des couleurs pour une bonne compréhension de vos détails.

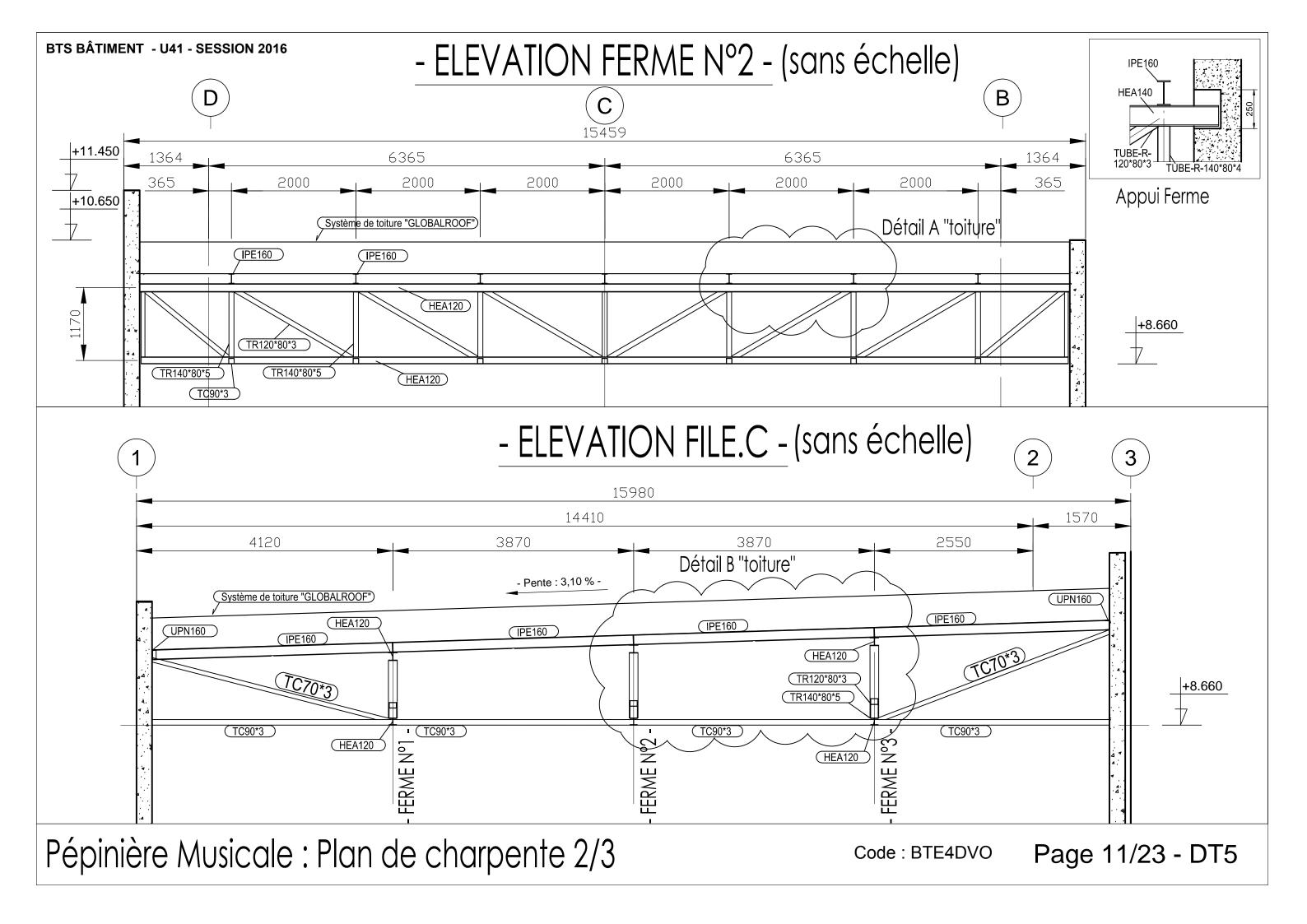
BTS BÂTIMENT		SESSION 2016
Dimensionnement et vérification d'ouvrages – E 41	Code : BTE4DVO	Page 6/23

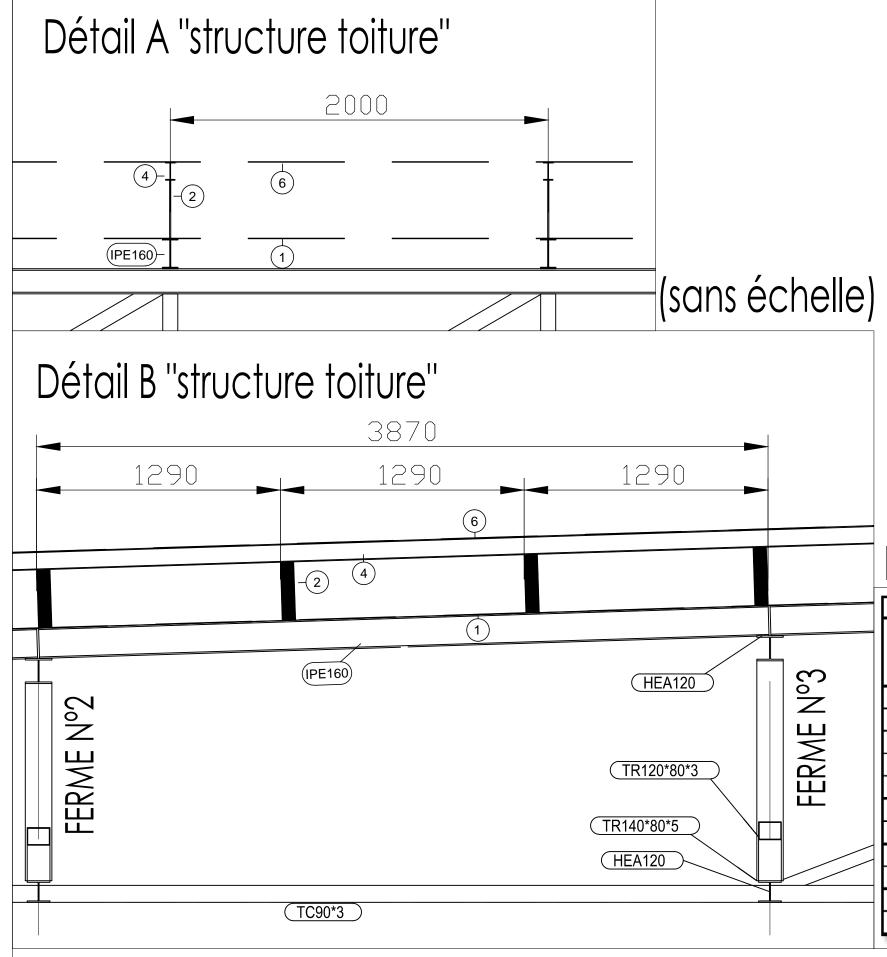


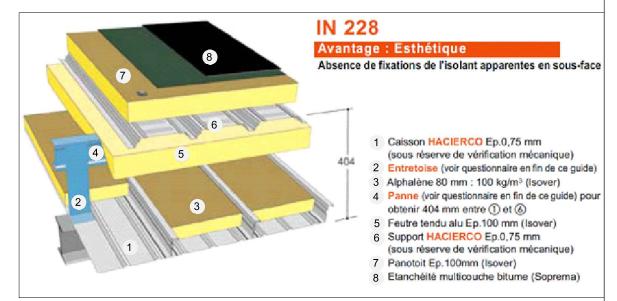
Pépinière Musicale: Plan du Rez de Chaussée Code: BTE4DVO Page 7/23 - DT1


Pépinière Musicale: Plan de Masse

Code: BTE4DVO Page 8/23 - DT2

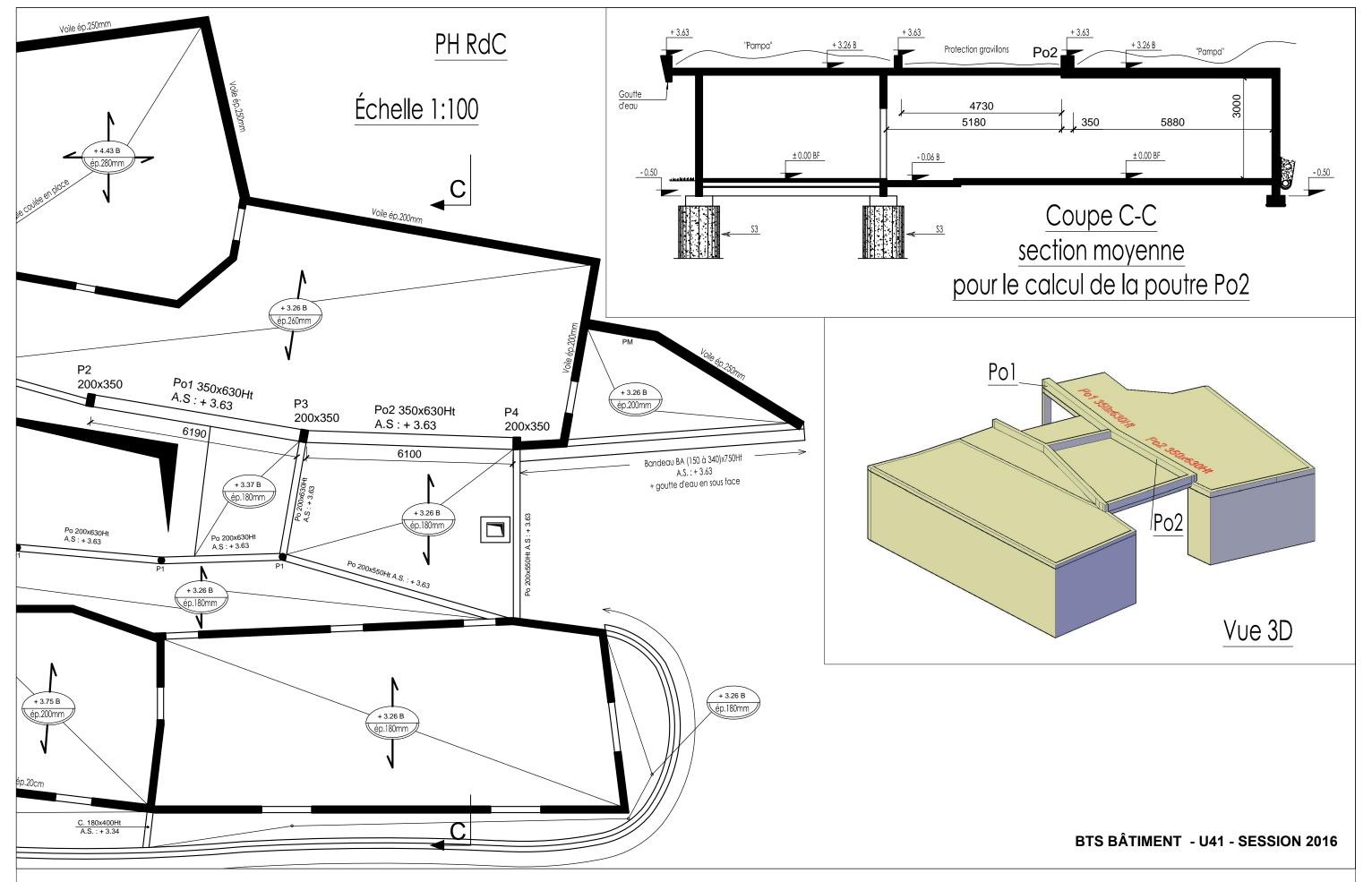

Pépinière Musicale: Coupes Architecte


Page 9/23 - DT3 Code: BTE4DVO


Pépinière Musicale: Plan de Charpente 1/3

Code: BTE4DVO Page 10/23 - DT4

Extrait Documentation "HACIERCO"



Entre-axe des Pannes

HACIERCO C 38							38			
Charges	Charges		2 AP	PUIS			3 APPUIS			
d'exploitation	permanentes						Epaisse	ur (mm)		
(daN/m²)	(daN/m²)	0,75	0,88	1,00	1,25	0,75	0,88	1,00	1,25	
100	10	2,45	2,55	2,70	2,90	3,15	3,35	3,50	3,80	
100	15	2,45	2,55	2,70	2,85	3,15	3,35	3,50	3,75	
100	20	2,40	2,55	2,65	2,85	3,15	3,35	3,45	3,70	
100	25	2,40	2,50	2,60	2,80	3,10	3,30	3,40	3,65	
100	30	2,35	2,50	2,60	2,75	3,10	3,25	3,40	3,60	
110	25	2,35	2,45	2,55	2,75	3,05	3,20	3,35	3,55	
110	30	2,30	2,40	2,50	2,70	3,00	3,15	3,30	3,55	
125	25	2,25	2,35	2,45	2,65	2,95	3,10	3,25	3,45	
125	30	2,25	2,35	2,45	2,60	2,90	3,05	3,20	3,45	
150	25	2,15	2,25	2,35	2,50	2,80	2,95	3,05	3,30	
150	30	2,15	2,25	2,35	2,50	2,80	2,95	3,05	3,25	


Pépinière Musicale: Plan de Charpente 3/3

Code: BTE4DVO Page 12/23 - DT6

Pépinière Musicale: Plan d'exécution du Rez de Chaussée

Code: BTE4DVO Page 13/23 - DT7

Pépinière Musicale: Plan d'Armatures Po1 et Po2

Page 14/23 - DT8

Code: BTE4DVO

Extrait de la NOTE DE CALCULS

FERME N°2 Solution de base avec l'âme complètement encastrée

« Chargement aux ELU »

+------| Action(s) de liaison [kN kN.m] |

Noeud 19 - Rx = -446,97 Ry = 172,50 Mz = 0.0

Noeud 20 - Rx = 446,97 Ry = 172,50 Mz = 0.0

| Efforts intérieurs [kN kN.m] |

+----+

N = E	ffort	normal V _Y =	Effort tran	chant Mfz =	= Moment fléchissant
ELE	orig	ine No	$V_Y o$	$Mf_{Z}o$	dL(m)
	extr	émité Ne	$V_Y e$	Mfze	
1	1	9,83	-5,02	-4,07	2,625E-05
	2	9,83	-5,02	3,06	
2	2	222,24	-2,30	-2,10	8,354E-04
	3	222,24	-2,30	2,49	
3	3	417,23	-0,26	1,16	1,568E-03
	4	417,23	-0,26	1,69	
4	4	535,23	1,08	2,46	2,012E-03
	5	535,23	1,08	0,29	
9	10	5,02	9,83	7,43	2,270E-05
	1	5,02	9,83	-4,07	
10	11	-143,69	1,48	0,86	-6,487E-04
	2	-143,69	1,48	-0,87	
11	12	-90,76	2,21	1,15	-4,098E-04
	3	-90,76	2,21	-1,43	
12	13	-46,37	-0,80	-0,64	-2,094E-04
	4	-46,37	-0,80	0,29	
13	14	-24,09	-0,0	-0,0	-1,087E-04
	5	-24,09	-0,0	0,0	
18	10	267,68	6,80	8,22	1,123E-03
	2	267,68	6,80	-4,30	
19	11	223,31	0,03	0,18	1,180E-03
	3	223,31	0,03	0,10	
20	12	137,39	0,41	1,42	7,261E-04
	4	137,39	0,41	0,46	
21	13	50,92	0,67	1,65	2,691E-04
	5	50,92	0,67	0,09	

26	19	446,97	-172,50	0,00	1,092E-04	
	10	446,97	-172,50	22,42		
27	10	226,21	5,49	6,76	6,037E-04	
	11	226,21	5,49	-1,04		
28	11	31,95	-2,46	-2,08	1,201E-04	
	12	31,95	-2,46	2,84		
29	12	-89,06	-1,21	0,26	-3,348E-04	
	13	-89,06	-1,21	2,68		
30	13	-132,55	0,54	1,67	-4,983E-04	
	14	-132,55	0,54	0,58		

FERME N°2 Variante avec les éléments d'âme articulés « Chargement aux ELU »

Effo	orts in					
+ N	=ffort	normal V.	+ - Effort tran	chant Mf.	z = Moment fléchissant	1 2 3
	origin	-	V _Y O	Mf _z o	dL(m)	+ +
	extrér		V _Y e	Mf _z e	ar(iii)	' '
4	4	537,03	0,75	2,00	2,019E-03	
•	5	537,03	0,75	0,50	2,0102 00	
27	10	224,95	19,03	22,42	6,004E-04	
	11	224,95	19,03	-4,60	0,0042 04	
9	10	-0,26	-0,00	-0,00	-1,188E-06	
J	1	-0,26	0,00	0,00	1,1002 00	
10	11	-158,67	-0,00	-0,00	-7,164E-04	
10	2	-158,67	0,00	0,00	-7,1046-04	
11	12	-89,65	-0,00	-0,00	-4,047E-04	
• •	3	-89,65	0,00	0,00	-4,047 =-04	
12	13	-47,62	-0,00	-0,00	-2,150E-04	
12	4	-47,62 -47,62	0,00	0,00	-2,130L-04	
13	14	-24,11	-0,00	-0,00	-1,088E-04	
13	5	-24,11 -24,11	-0,00 0,00	0,00	-1,000E-04	
18	10	289,04			1,212E-03	
10	2	289,04 289,04	-0,00	-0,00	1,212E-03	
40		<u> </u>	0,00	0,00	4 4025 02	
19	11	224,03	-0,00	-0,00	1,183E-03	
20	3	224,03	0,00	0,00	7 2025 04	
20	12	139,70	-0,00	-0,00	7,383E-04	
04	4	139,70	0,00	0,00	0.5005.04	
21	13	49,12	-0,00	-0,00	2,596E-04	DTA
	5	49,12	0,00	0,00		D19

BTS BÂTIMENT		SESSION 2016
Dimensionnement et vérification d'ouvrages – E 41	Code : BTE4DVO	Page 15/23

FORMULAIRE « Extrait Eurocode 3 »

Effort axial de traction (N)

On doit vérifier : $N_{Ed} \leq N_{t.Rd} = \min(N_{pl,Rd}, N_{u,Rd}, N_{net,Rd})$ où

 N_{Ed} = Effort de traction (agissant) sollicitant la section

 $N_{t,Rd}$ = Résistance de calcul à la traction de la section, prise comme la plus petite des

valeurs suivantes:

Lorsqu'un comportement ductile est requis, c'est à dire lorsque la section brute doit se plastifier avant la rupture de la section nette, il convient de vérifier la condition

supplémentaire : $N_{u,Rd} \geq N_{pl,Rd}$

SECTION BRUTE	SECTION NETTE				
(en partie courante)	(perçages déduits au droit des assemblages)				
	Assemblage par boulons	Assemblage par boulons			
	ordinaires :	précontraints (HR) :			
On considère que l'état de	II y a amplification des	L'étreinte latérale permet une			
plastification est atteint sur	contraintes de traction au droit	répartition quasi uniforme des			
toute la section transversale.	des perçages.	contraintes de traction			
A f_y γ_{MO}	A net $N_{u,Rd}$ $0,9 \cdot \frac{f_u}{\gamma_{M2}}$	A net f_y			
Résistance plastique de calcul de la section brute	Résistance ultime de calcul de la section nette au droit des trous de fixations $N_{u,Rd} = 0.9 A_{net} \frac{f_u}{\gamma_{M2}}$	Résistance plastique de la section nette, à considérer dans le cas d'assemblages par boulons HR précontraints 8.8 ou 10.9 (attaches boulonnées de catégorie C) pour lesquels aucun glissement n'est autorisé.			
$N_{pl,Rd} = A \frac{f_{y}}{\gamma_{M0}}$	Validité de cette expression : attaches symétriques. Pour des cornières assemblées par une seule aile et autres types de sections assemblées par des parois en console, se référer à : EN 1993-1-8 clause 3.6.3	$N_{net,Rd} = A_{net} \frac{f_y}{\gamma_{M0}}$			

Flexion simple : Moment fléchissant et effort tranchant (M et V) vérification simplifiée

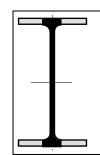
Pour le moment de flexion :

On doit vérifier : $M_{Ed} \leq M_{c,Rd}$

où M_{Ed} = Moment fléchissant (agissant) de calcul sollicitant la section droite à l'ELU ; $M_{c,Rd}$ = Résistance de calcul à la flexion de la section à l'ELU.

pour une section de classe 1 ou 2	pour une section de classe 3			
$oldsymbol{M}_{c,Rd} = oldsymbol{M}_{pl,Rd}$ (moment résistant plastique)	$oldsymbol{M}_{c,Rd} = oldsymbol{M}_{el,Rd}$ (moment résistant élastique)			
$oldsymbol{M}_{pl,Rd} = oldsymbol{W}_{pl} imes rac{oldsymbol{f}_{y}}{oldsymbol{\gamma}_{oldsymbol{M}0}}$	$oldsymbol{M}_{el,Rd} = oldsymbol{W}_{el,min} imes rac{oldsymbol{f}_{y}}{oldsymbol{\gamma}_{M0}}$			

Pour l'effort tranchant

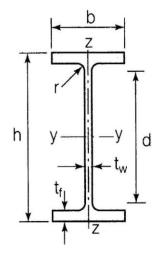

On doit vérifier : $\frac{V_{Ed}}{V_{c.Rd}} \le 1,0$

Calcul plastique $V_{c,Rd} = V_{pl.Rd} = A_v \frac{1}{\sqrt{3}} \frac{f_y}{\gamma_{M0}} = 0,58A_v \frac{f_y}{\gamma_{M0}}$

 $oldsymbol{V_{Ed}}$: effort tranchant (agissant) de calcul à L'E.L.U. ;

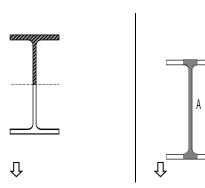
 $V_{\scriptscriptstyle pl.Rd}$: effort tranchant résistant à L'E.L.U. ;

 $A_{_{\!\scriptscriptstyle
m P}}$: aire de cisaillement donnée dans les catalogues des caractéristiques des profilés.


Laminés marchands:

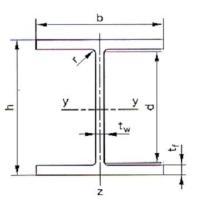
Les valeurs de l'aire plastifiée (A_v) sont données dans les tableaux de caractéristiques des profilés.

Profilés Reconstitués Soudés : Pour les P.R.S., la valeur de A v est celle de l'âme seule


BTS BÂTIMENT		SESSION 2016
Dimensionnement et vérification d'ouvrages – E 41	Code : BTE4DVO	Page 16/23

Caractéristiques des Profilés

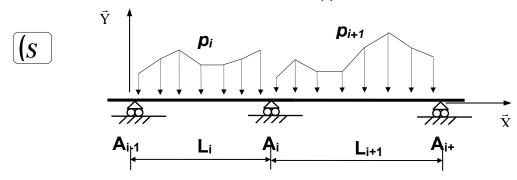
Caractéristiques des profilés IPE

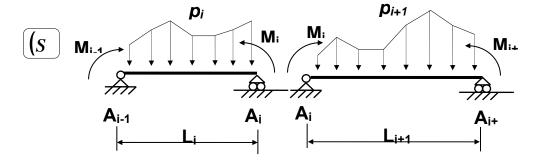

Les axes et désignations sont conformes à l'Eurocode 3.

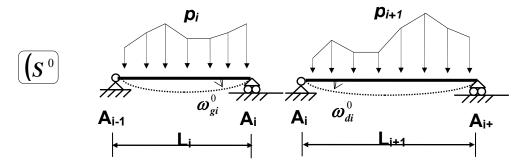
Pro fil	Masse par mètre P	Aire de la section A	Moment quadratique I _y	Module de résistance élastique à la flexion $W_{el.y}$	Rayon de giration i_y	$\frac{2\times S_y}{\text{Module plastique}} \\ W_{pl.y}$	$A_{ u_{z}}$	${ m I}_z$	$W_{el.z}$	i_z	$\frac{2 \times S_z}{W_{pl.z}}$	A_{vy}
	kg/m	cm²	cm⁴	cm ³	cm	cm³	cm ²	cm ⁴	cm³	cm	cm³	cm ²
80	6,0	7,64	80,1	20,0	3,24	23,2	3,6	8,48	3,69	1,05	5,8	5,1
100	8,1	10,3	171,0	34,2	4,07	39,4	5,1	15,91	5,78	1,24	9,1	6,7
120	10,4	13,2	317,8	53,0	4,90	60,7	6,3	27,65	8,64	1,45	13,6	8,6
140	12,9	16,4	541,2	77,3	5,74	88,3	7,6	44,90	12,30	1,65	19,2	10,6
160	15,8	20,1	869,3	108,7	6,58	123,9	9,7	68,28	16,65	1,84	26,1	12,8
180	18,8	23,9	1 317,0	146,3	7,42	166,4	11,3	100,81	22,16	2,05	34,6	15,3
200	22,4	28,5	1 943,2	194,3	8,26	220,6	14,0	142,31	28,46	2,24	44,6	18
220	26,2	33,4	2 771,8	252,0	9,11	285,4	15,9	204,81	37,24	2,48	58,1	21,3

Caractéristiques des profilés HEA

Les axes et désignations sont conformes à l'Eurocode 3.

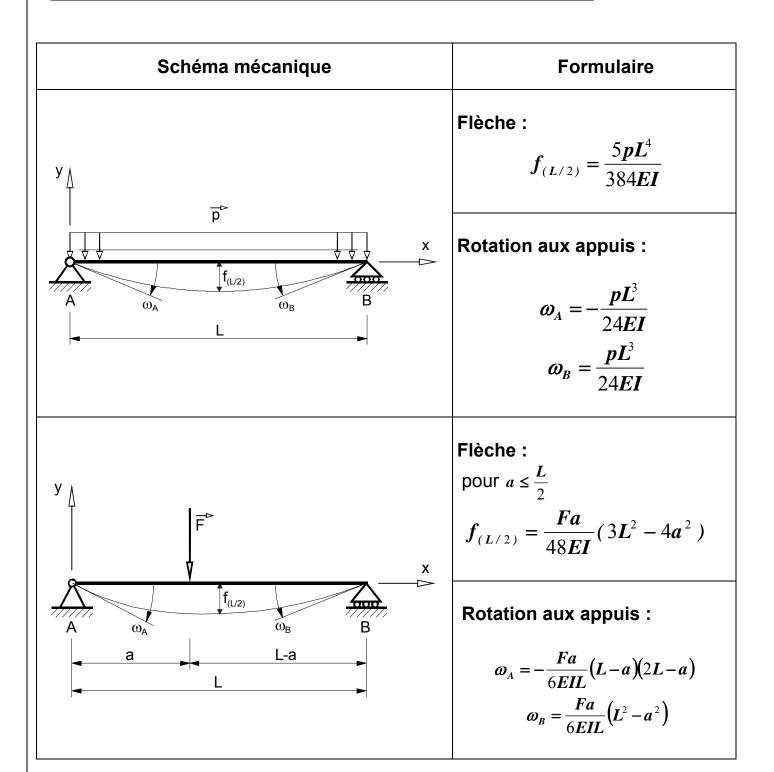

PDOE!! É	Masse	Aire		Dim	ensions	;			Valeurs s	tatique (ax	e fort)		\	/aleurs st	atiques (a	axe faible)	ı
PROFILÉ	G kg/ml	S cm ²	h mm	b mm	t _w mm	t _f mm	r₁ mm	l _y cm⁴	W _{el,y} cm ³	W _{pl,y} cm ³	i _y cm	A _{yz} cm ²	I _z cm ⁴	W _{el,z} cm ³	W _{pl,z} cm ³	i _z cm	A _{zy} cm ²
								PROFI	LS HEA								
HEA100	16,70	21,24	96	100	5	8	12	349	72,8	83,0	4,1	7,6	134	26,8	41,1	2,5	10,7
HEA120	19,90	25,34	114	120	5	8	12	606	106,3	119,5	4,9	8,5	231	38,5	58,9	3,0	12,8
HEA140	24,70	31,42	133	140	6	9	12	1033	155,4	173,5	5,7	10,1	389	55,6	84,9	3,5	15,9
HEA160	30,40	38,77	152	160	6	9	15	1673	220,1	245,1	6,6	13,2	616	77,0	117,6	4,0	19,2
HEA180	35,50	45,25	171	180	6	10	15	2510	293,6	324,9	7,5	14,5	925	102,7	156,5	4,5	22,8
HEA200	42,30	53,83	190	200	7	10	16	3692	388,6	429,5	8,3	18,1	1336	133,6	203,8	5,0	26,7
HEA220	50,50	64,34	210	220	7	11	18	5410	515,2	568,5	9,2	20,7	1955	177,7	270,6	5,5	32,3
HEA240	60,30	76,84	230	240	8	12	21	7763	675,1	744,6	10,1	25,2	2769	230,7	351,7	6,0	38,4
HEA260	68,20	86,82	250	260	8	13	24	10450	836,4	919,8	11,0	28,8	3668	282,1	430,2	6,5	43,3
HEA280	76,40	97,26	270	280	8	13	24	13670	1013,0	1112,0	11,9	31,7	4763	340,2	518,1	7,0	48,5


BTS BÂTIMENT		SESSION 2016
Dimensionnement et vérification d'ouvrages – E 41	Code : BTE4DVO	Page 17/23


FORMULAIRE « Mécanique »

Théorème des 3 moments (formule de Clapeyron);

Hypothèses : EI = constante sur l'ensemble de la poutre, en l'absence de dénivellations d'appuis.



Système isostatique associé

$$|L_{i}M_{i-1} + 2(L_{i} + L_{i+1})M_{i} + L_{i+1}M_{i+1} = 6EI(\omega_{di}^{0} - \omega_{gi}^{0})|$$

Rotations et flèches pour des poutres isostatiques courantes

BTS BÂTIMENT		SESSION 2016
Dimensionnement et vérification d'ouvrages – E 41	Code : BTE4DVO	Page 18/23

FORMULAIRE « Extrait Eurocode 1 »

Combinaisons fondamentales

États limites ultimes, pour les situations de projet durables et transitoires.

Lorsque la précontrainte est absente **(6.10)** se réduit à :

$$\sum_{i} \gamma_{G,j} G_{k,j} + \gamma_{Q,i} Q_{k,1} + \sum_{i>1} \gamma_{Q,i} \Psi_{0,i} Q_{k,i}$$

 $\sum \gamma_{G,j} G_{k,j} + \gamma_{Q,i} Q_{k,1} + \sum \gamma_{Q,i} \Psi_{0,i} Q_{k,i}$ **(6.10)** le symbole « + » signifie «doit être combiné à»

avec:

: valeur caractéristique de l'action permanente j ; $G_{k,j}$

: coefficient de sécurité partiel de l'action permanente j ; $-\gamma_{G,j}$

: valeur caractéristique de l'action variable dite dominante ; $Q_{k,1}$

: valeurs caractéristiques des autres actions variables dites d'accompagnement $Q_{k,i}$

(avec $i \ge 2$);

: coefficient de sécurité partiel affecté à l'action dominante ; $\gamma_{Q,1}$

: coefficient de sécurité partiel affecté à chaque type d'action d'accompagnement ; - $\gamma_{Q,i}$

: coefficients traduisant le fait qu'il soit très improbable que plusieurs actions variables - $\psi_{0,i}$ atteignent toutes ensemble et au même moment leurs valeurs caractéristiques.

Supproche 2: Application de valeurs de calcul provenant du Tableau A1.2 (B) aux actions géotechniques ainsi qu'aux autres actions appliquées à la structure ou en provenance de celle-ci.

Équation $\{A1.2B\}$ pour toutes les actions.

Equation (A1.2)	, p				
STR/GEO	6.10 tableau	Pour le dimensionnement des éléments structuraux non soumis à des actions géotechniques (EN 1990 A1.3.1 (4)).			
SITUATIONS DURABLES ET TRANSITOIRES	A1.2 (B)(F)	$\{A1.2B\}$ $1,35G_{k,sup} + 1,00G_{k,inf} + 1,50Q_{k,1} + 1,50\sum_{i>1} \psi_{0,i}Q_{k,i}$			
		Les valeurs caractéristiques de toutes les actions permanentes d'une même origine sont multipliées par $\gamma_{G,sup}=1,35$ si l'effet total résultant			
		de ces actions est défavorable, et $\gamma_{G,inf} = 1,00$ si cet effet est			
		favorable.			
		Par exemple, toutes les actions provenant du poids propre de la structure peuvent être considérées comme émanant d'une même origine; cela s'applique également si différents matériaux sont concernés.			

Tableau A1.1 (F): Valeurs des coefficients ψ pour les bâtiments

Valeur caractéristique : ψ_0 ; valeur fréquente : ψ_1 ; valeur quasi-permanente : ψ_2

Action	ψ_0	ψ_1	ψ_2
Charges d'exploitation des bâtiments,			
catégorie (voir EN 1991-1.1)			
- Catégorie A : habitation, zones résidentielles	0,7	0,5	0,3
- Catégorie B : bureaux	0,7	0,5	0,3
- Catégorie C : lieux de réunion	0,7	0,7	0,6
- Catégorie D : commerces	0,7	0,7	0,6
- Catégorie E : stockage	1,0	0,9	0,8
- Catégorie F : zone de trafic, véhicules de poids ≤ 30 kN	0,7	0,7	0,6
- Catégorie G : zone de trafic, véhicules de poids compris entre 30 et	0,7	0,5	0,3
160 kN	0	0	0
- Catégorie H : toits			
Charges dues à la neige sur les bâtiments (voir EN 1991-1-3):			
	0,70	0,50	0,20
- pour lieux situés à une altitude H > 1000 m au-dessus du niveau de la mer et pour Saint-pierre et Miquelon	0,50	0,20	0
- pour lieux situés à une altitude H ≤ 1000 m au-dessus du niveau de la mer			

FORMULAIRE « Extrait Eurocode 2 »

Vérification du lit inférieur sur appui

Effort de traction à ancrer sur les appuis de rive et intermédiaires noté F_{Ed} .

Cette force F_{Ed} conditionne la section droite du 1^{er} lit d'armatures longitudinales et son

avec $y_d = \frac{y_k}{\gamma_s}$ et $\gamma_s = 1.15$ ancrage.

VALEURS DE F_{Ed}	Poutres
Appui d'extrémité Pour simplifier nous prendrons $\cot \theta_A = 1$	$oldsymbol{F_{Ed}} = oldsymbol{V_{Ed}}ig $
Appui intermédiaire Si valeur de $F_{Ed} \le 0$, il faut ancrer la barre de 10ϕ dans l'appui. M_{Ed} : valeur algébrique du moment sur l'appui intermédiaire.	$ V_{Ed} + \frac{M_{Ed}}{0,9d}$

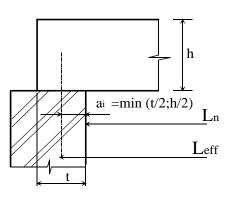
BTS BÂTIMENT		SESSION 2016
Dimensionnement et vérification d'ouvrages – E 41	Code : BTE4DVO	Page 19/23

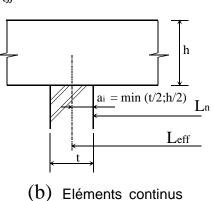
Portées utiles (de calcul) des poutres et dalles dans les bâtiments

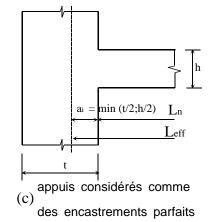
Différents cas sont envisagés :

a) éléments isostatiques

b) éléments continus


c) Appuis considérés comme des encastrements parfaits

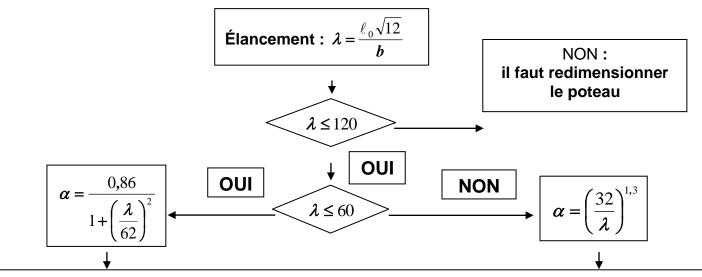

La portée utile l_{eff} d'un élément peut être calculée de la manière suivante ; $l_{eff} = l_n + a_1 + a_2$ {5.8}


Avec l_n : distance libre entre les nus d'appuis.

Les valeurs a_1 et a_2 à chaque extrémité de la portée, peuvent être déterminées à partir des valeurs correspondantes a_i de la figure 5.4.

Détermination de la portée de calcul L_{eff} d'après l'expression 2.15, pour différents cas d'appuis.

(a) Eléments isostatiques


ORGANIGRAMME POTEAUX RECTANGULAIRES

Si d' est inconnu, prendre : 40 mm pour XC1 55 mm pour XC4

Données :- Catégorie de durée d'utilisation de projet : 4 ;

Classe d'exposition X ... donnant un enrobage nominal c_{nom}

- N_{Ed} , effort normal centré aux ELU
- A_c , aire du béton $b \times h$, avec $b \le h$ (ou b en mètre, correspondant au sens du flambement)
- Enrobage relatif $\delta = \frac{d'}{b}$ avec $d' = c_{nom} + \phi_t + \frac{\phi_t}{2}$
- Classe du béton C ../.. donnant f_{ck} et $f_{cd} = \frac{f_{ck}}{1.5}$ (âge du béton > 28 jours)
- Acier B500 donnant f_{vk} = 500 MPa et $f_{vd} = f_{vk}/1,15 = 434,8$ MPa
- Longueur efficace (ou de flambement) notée $\ell_{\rm o}$ = longueur libre du poteau notée l

$$N_{Ed} \le N_{Rd}$$
 et $N_{Rd} = \alpha k_h \lfloor A_c f_{cd} + A_s f_{yd} \rfloor$ ou $N_{Rd} = \alpha k_h A_c \lfloor f_{cd} + \rho f_{yd} \rfloor$

avec
$$\rho = \frac{A_s}{A_c}$$
 et si $b < 0.500$ m alors $k_h = \lfloor 0.75 + 0.5b^{[m]} \rfloor [1 - 6\rho\delta]$ sinon $k_h = 1$

La valeur de As est obtenue en résolvant l'équation du 2^e degré suivante :

$$(6\frac{\delta}{A_c}f_{yd})A_s^2 - (f_{yd} - 6\delta f_{cd})A_s + (\frac{N_{Ed}}{K} - A_c f_{cd}) = 0 \quad \text{avec } K = \alpha(0,75+0,5b^{[m]}) \text{ avec } b \text{ en m}$$

En première approximation pour obtenir une valeur approchée de A_s :

$$N_{Ed} = \alpha k_h A_c \mid f_{cd} + \rho f_{yd} \mid$$
 avec $k_h = 0.93$

Section minimale des armatures longitudinales

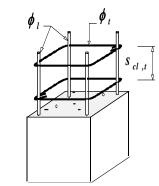
$$A_{s,min} = max \left[0.10 \frac{N_{Ed}}{f_{yd}} ; 0.002 A_c \right]$$

{9.12N}

Section maximale des armatures longitudinales en dehors des zones de recouvrement $A_{s,max} = 0.04A_c$

 A_c = aire de la section brute transversale de béton f_{yd} limite élastique de calcul de l'armature Le diamètre des barres longitudinales $\phi_l \ge \phi_{l,min} = 8 \ mm$

dans les zones de recouvrement $A_{s.max} = 0.08A_c$


Armatures transversales : $\phi_t \ge max \left[6 \ mm; \phi_{l,max} / 4 \right]$

espacement:
$$s_{cl,t} \le s_{cl,t max} = min \mid 400 \ mm$$
 ; $20\phi_{l,min}$; $b \mid$

 $\phi_{l_{min}}$ = diamètre de la plus petite armature longitudinale résistante

b = plus petite dimension transversale

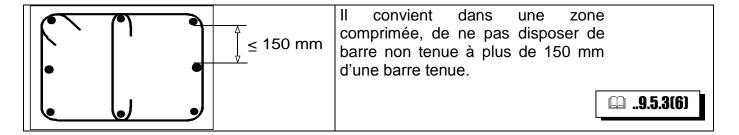
Les armatures transversales doivent maintenir toutes les barres prises en compte dans les calculs de résistance.

BTS BÂTIMENT		SESSION 2016
Dimensionnement et vérification d'ouvrages – E 41	Code : BTE4DVO	Page 20/23

Espacement des cours s_{cl}

Il convient d'ancrer convenablement les armatures transversales.

Il convient de réduire l'espacement $s_{cl.tmax}$ d'un facteur 0.6 (multiplier $s_{cl.tmax}$ par 0,6):


 $s_{cl.t} \le 0, 6s_{cl.tmax} = min \mid 240 \ mm$; $12\phi_{l.min}$; $0, 6b \mid avec b$ (ou D) petite dimension transversale du poteau

- dans les sections situées à une distance égale à la plus grande dimension de la section transversale du poteau (h ou D) au-dessus ou au-dessous d'une poutre ou d'une dalle.
 - **..9.5.3(4)**
- dans les jonctions par recouvrement d'armatures longitudinales lorsque le diamètre maximal des barres longitudinales est supérieur à 14 mm ($\phi_i > 14$). Un minimum de 3 barres (cours d'armatures) transversales régulièrement disposées dans la longueur de recouvrement est nécessaire.

Lorsque la direction des barres longitudinales change (aux changements de dimensions du poteau par exemple), il convient de calculer l'espacement des armatures transversales en tenant compte des efforts transversaux associés. Ces effets peuvent être ignorés si le changement de direction est inférieur ou égal à 1 pour 12.

9.5.3(5)

Il convient que chaque barre longitudinale (ou paquet de barres longitudinales) placé dans un angle soit maintenue par des armatures transversales.

Longueur de recouvrement des armatures en attente

pour les poteaux bi-articulés en compression centrée

Comme la proportion ρ_1 de barres avec recouvrement est supérieure à 50% : $\alpha_6 = 1.5$ Pour un recouvrement classique (armatures transversales non soudées) la longueur de recouvrement : l_0

$$l_{0} = \alpha_{6} l_{b,rqd} = 1.5 \frac{\phi}{4} \frac{\sigma_{sd}}{f_{bd}}$$

$$l_{0,min} > max(0.3\alpha_{6} l_{b,rqd} ; 15\phi ; 200 mm)$$

avec $f_{bd}=2,25\times\eta_1\times\eta_2\times f_{ctd}$ ($\eta_2=1$ pour $\phi\leq 32$ mm) et ($\eta_1=1$ bonnes conditions d'adhérence)

Pour un $f_{ck} = 25MPa$ $\sigma_{sd} = f_{yd} = 435MPa$

 $l_0/\phi = 60$

Pour un $f_{ck} = 30MPa$ $\sigma_{sd} = f_{vd} = 435MPa$

 $l_0/\phi = 55$

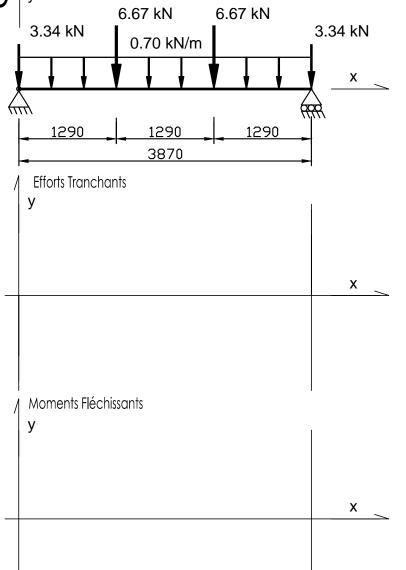
Pour les poteaux toujours sollicités en compression centrée, la longueur des attentes sera déterminée comme indiqué ci-dessous:

« Pour les poteaux toujours sollicités en compression centrée, pour simplifier, la longueur des attentes sera déterminée forfaitairement : $l_0 = 30\phi$.

Pour la disposition des armatures transversales dans les zones de recouvrement des barres toujours comprimées, il convient de se reporter au paragraphe 13.6.7.3 Armatures transversales (clause 8.7.4.2).

Aciers en barres

Diamètre	Poids	Périmètre	Section pour N barres en cm²									
mm	kg/m	cm	1	2	3	4	5	6	7	8	9	10
5	0,154	1,57	0,196	0,393	0,589	0,785	0,982	1,18	1,37	1,57	1,77	1,96
6	0,222	1,88	0,283	0,565	0,848	1,13	1,41	1,70	1,98	2,26	2,54	2,83
8	0,395	2,51	0,503	1,01	1,51	2,01	2,51	3,02	3,52	4,02	4,52	5,03
10	0,617	3,14	0,785	1,57	2,36	3,14	3,93	4,71	5,50	6,28	7,07	7,85
12	0,888	3,77	1,13	2,26	3,39	4,52	5,65	6,79	7,92	9,05	10,18	11,31
14	1,208	4,40	1,54	3,08	4,62	6,16	7,70	9,24	10,78	12,32	13,85	15,39
16	1,578	5,03	2,01	4,02	6,03	8,04	10,05	12,06	14,07	16,08	18,10	20,11
20	2,466	6,28	3,14	6,28	9,42	12,57	15,71	18,85	21,99	25,13	28,27	31,42
25	3,853	7,85	4,91	9,82	14,73	19,63	24,54	29,45	34,36	39,27	44,18	49,09
32	6,313	10,05	8,04	16,08	24,13	32,17	40,21	48,25	56,30	64,34	72,38	80,42
40	9,865	12,57	12,57	25,13	37,70	50,27	62,83	75,40	87,96	100,53	113,10	125,66

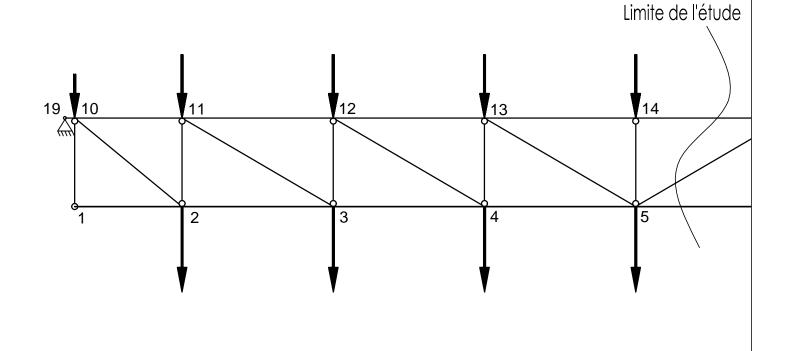

BTS BÂTIMENT		SESSION 2016
Dimensionnement et vérification d'ouvrages – E 41	Code : BTE4DVO	Page 21/23

Étude 1 Question 4

HACIERCO C 38									
Charges d'exploitation (daN/m²)	Charges permanentes (daN/m²)	2 APPUIS				3 APPUIS			
		Epaisseur (mm)							
		0,75	0,88	1,00	1,25	0,75	0,88	1,00	1,25
100	10	2,45	2,55	2,70	2,90	3,15	3,35	3,50	3,80
100	15	2,45	2,55	2,70	2,85	3,15	3,35	3,50	3,75
100	20	2,40	2,55	2,65	2,85	3,15	3,35	3,45	3,70
100	25	2,40	2,50	2,60	2,80	3,10	3,30	3,40	3,65
100	30	2,35	2,50	2,60	2,75	3,10	3,25	3,40	3,60
110	25	2,35	2,45	2,55	2,75	3,05	3,20	3,35	3,55
110	30	2,30	2,40	2,50	2,70	3,00	3,15	3,30	3,55
125	25	2,25	2,35	2,45	2,65	2,95	3,10	3,25	3,45
125	30	2,25	2,35	2,45	2,60	2,90	3,05	3,20	3,45
150	25	2,15	2,25	2,35	2,50	2,80	2,95	3,05	3,30
150	30	2,15	2,25	2,35	2,50	2,80	2,95	3,05	3,25

IPE 160 Chargement "ELU"

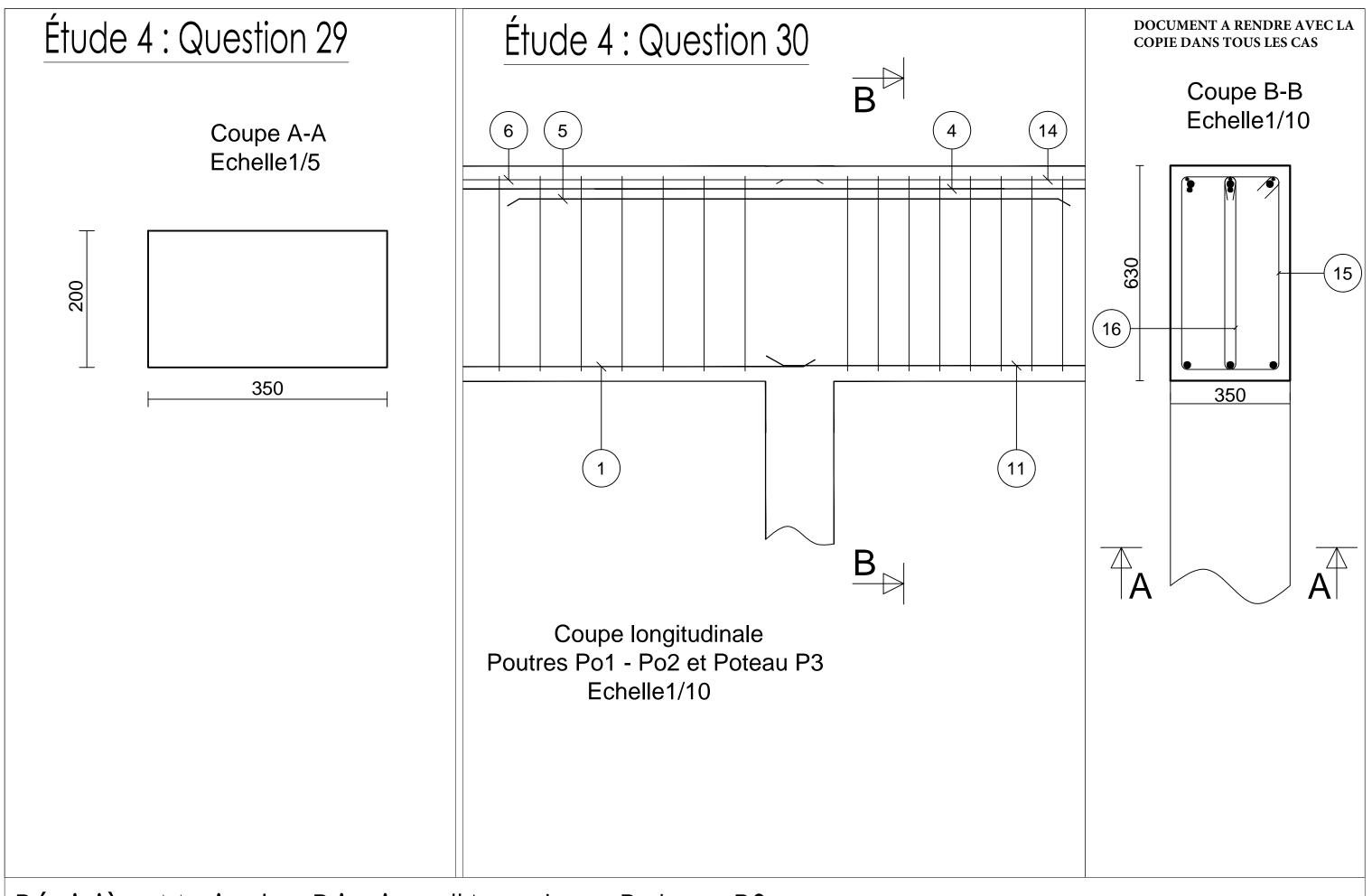
Étude 1 Question 5/y


Étude 2 Question 12

DOCUMENT A RENDRE AVEC LA COPIE DANS TOUS LES CAS

Limite de l'étude

19 10 11 12 13 14


Étude 2 Question 15

Pépinière Musicale : Étude mécanique charpente

Code: BTE4DVO Page

Page 22/23 - DR1

Pépinière Musicale: Principe d'Armatures Poteau P3

Code: BTE4DVO Page 23/23 - DR2