BREVET DE TECHNICIEN SUPERIEUR ASSISTANCE TECHNIQUE D'INGENIEUR MATHEMATIQUES - PHYSIQUE APPLIQUEE

EPREUVE U32 - SCIENCES PHYSIQUES

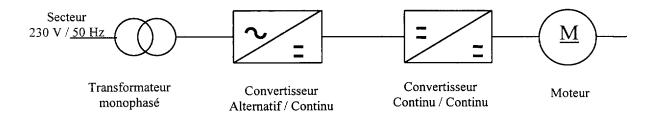
Durée: 2 heures

Coefficient: 2

A l'exclusion de tout autre matériel, l'usage de la calculatrice est autorisé conformément à la circulaire n°99-186 du 16 novembre 1999.

Documents à rendre avec la copie :

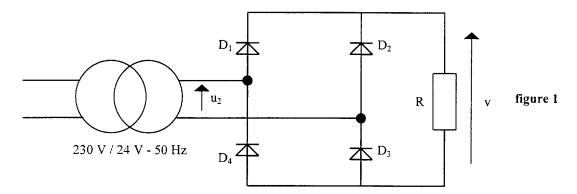
- document réponse n°1 page 8/9
- document réponse n°2 page 9/9


Dès que le sujet vous est remis, assurez-vous qu'il soit complet et comporte 9 pages numérotées de 1/9 à 9/9.

Code sujet: ATPHY

COMMANDE DE VITESSE D'UN MOTEUR A COURANT CONTINU

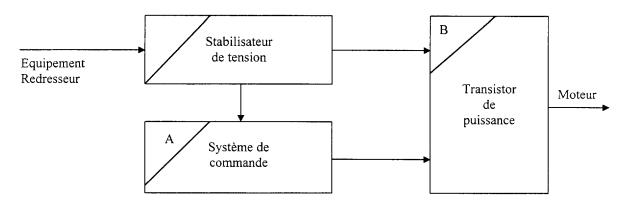
• Le dispositif d'ensemble permet de régler la vitesse d'un moteur à courant continu. Il est résumé par le synoptique n°1.


Synoptique n°1

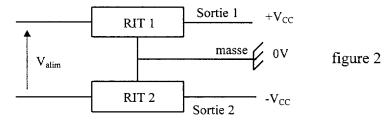
- L'étude portera sur :
 - > le convertisseur alternatif / continu, alimentant le convertisseur continu / continu ;
 - ➤ le convertisseur continu / continu qui comprend le système de commande du transistor et l'amplification de puissance ;
 - > le moteur à courant continu à aimants permanents.

PARTIE I: Etude du convertisseur alternatif-continu (4 points)

• Le dispositif étudié est représenté figure 1, ci-dessous.

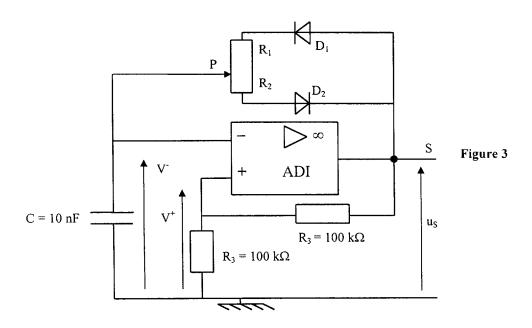

- Le transformateur monophasé 230 V / 24 V 50 Hz alimente un pont redresseur à quatre diodes supposées idéales.
- Le pont redresseur à quatre diodes est alimenté par une tension sinusoïdale u₂ de fréquence f et de valeur efficace U telles que : f = 50 Hz ; U = 24 V.
- I.1) Calculer le rapport de transformation, m, du transformateur.
- I.2) Placer sur le schéma de montage, représenté figure 7 du document réponse n°1, page 8/9, les branchements de l'oscilloscope permettant de visualiser la tension v(t) disponible à la sortie du pont redresseur.
- I.3) On place à la sortie du pont une résistance R et on visualise la tension v(t) à l'aide d'un oscilloscope.
 - I.3.1) Représenter, sur la figure 8 du document réponse n°1, page 8/9, la forme de l'oscillogramme obtenu en précisant la valeur maximale et la période de la tension observée.
 - I.3.2) Calculer la valeur moyenne, notée <v>, de la tension v(t) aux bornes de la résistance.
 - I.3.3) Citer un type d'appareil permettant la mesure de la valeur moyenne <v> de la tension v(t).
 - I.3.4) On désire filtrer la tension v(t) disponible à la sortie du pont redresseur pour obtenir la valeur moyenne <v>. Quel composant doit-on utiliser pour réaliser ce filtrage? Préciser son branchement.

PARTIE II: Etude du convertisseur continu-continu (11,5 points)

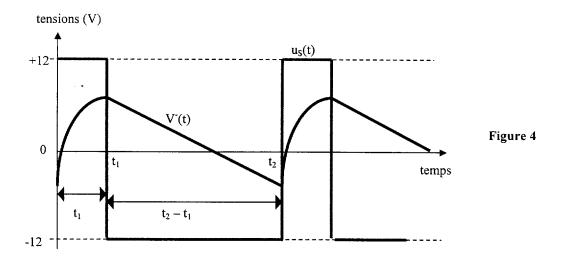

- La tension de sortie du convertisseur alternatif-continu, correctement filtrée, alimente le convertisseur continu-continu, représenté par le synoptique n°2, page 4/9.
- Ce convertisseur est constitué de trois sous-ensembles :
 - a) stabilisateur de tension
 - b) système de commande
 - c) transistor de puissance

• Il fournit au moteur à courant continu, étudié dans la partie III, une tension moyenne réglable et il alimente le système de commande.

Synoptique n°2

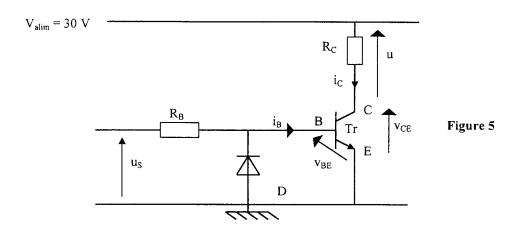


• Le sous-ensemble, stabilisateur de tension, est représenté ci-dessous, figure 2.


Les deux régulateurs intégrés de tension, l'un positif (RIT 1) et l'autre négatif (RIT 2) sont alimentés par une tension constante de valeur V_{alim} telle que : $V_{alim} = 30 \text{ V}$

A. Etude du système de commande du transistor (6 points)

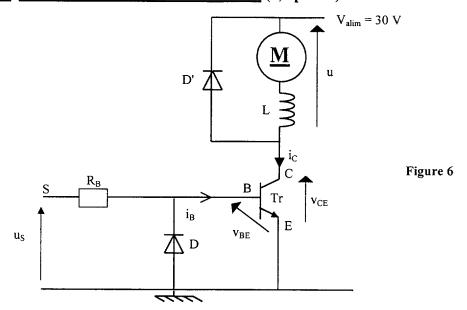
- Le montage étudié figure 3 représente un multivibrateur astable réalisé autour d'un amplificateur de différence intégré, appelé aussi amplificateur opérationnel.
- Dans toute cette partie, les courants d'entrée de l'amplificateur de différence intégré sont supposés nuls.


- L'amplificateur de différence intégré est alimenté par un système de deux tensions symétriques ± V_{CC} telles que : ± V_{CC} = ± 12 V.
- Les tensions de saturation \pm V_{sat} de l'amplificateur de différence intégré sont telles que : \pm V_{sat} = \pm 12 V.
- Les diodes D₁ et D₂ sont idéales.
- P est un potentiomètre tel que : $P = 470 \text{ k}\Omega$.
- On désigne par R₁ la résistance de la fraction de P reliée à la diode D₁ et par R₂ la résistance de la fraction de P reliée à la diode D₂.
- II.A.1) On laisse le curseur du potentiomètre en position fixe telle que $R_1 = 100 \text{ k}\Omega$. On obtient, en superposition, les oscillogrammes représentés figure 4, ci-dessous.

- II.A.1.1) Sur l'intervalle de temps $[0,t_1]$, la valeur de la tension u_S est : $u_S = +12$ V. Calculer la valeur de la tension V^+ .
- II.A.1.2) Représenter le schéma équivalent du circuit de charge du condensateur entre les instants 0 et t_1 , puis entre les instants t_1 et t_2 .
 - II.A.1.3) Donner les expressions littérales, en fonction de t₁ et de t₂:
 - de la période T de la tension de sortie u_S(t);
 - du rapport cyclique α de cette tension défini par le quotient de la durée du niveau haut sur la période.
 - II.A.1.4) Calculer la valeur numérique du rapport cyclique α en admettant les relations suivantes : $t_1 = R_1 C \ln 3$; $t_2 t_1 = R_2 C \ln 3$.
 - II.A.2) On fait varier le curseur du potentiomètre P dans un sens tel que R₁ augmente.
 - II.A.2.1) Montrer que la période T est constante et que sa valeur est quasiment égale à 5,2 ms.
 - II.A.2.2) Comment évoluent la durée t_1 et le rapport cyclique α ?
- II.A.2.3) Calculer la valeur de t_1 pour $\alpha = 0,4$. Tracer alors sur la figure 9 du document réponse n°1 la tension $u_S(t)$ pour cette valeur de α .

B. Étude du transistor de puissance (5,5 points)

- Le transistor de puissance étudié Tr est représenté sur la figure 5, ci-dessous. Son coefficient d'amplification en courant a pour valeur $\beta = 50$.
- Il est attaqué par le signal de sortie u_S(t) du multivibrateur astable (voir figure 3) et fonctionne en commutation.
- Lorsque le transistor est saturé, on utilisera les valeurs suivantes : $V_{BEsat} = 0.7 \text{ V}$ et $V_{CEsat} = 0 \text{ V}$.

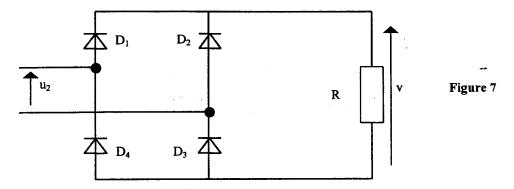

II.B.1) Préciser:

- II.B.1.1) le type et la famille du transistor Tr utilisé;
- II.B.1.2) les états du transistor et les valeurs de v_{CE} lorsque $u_S = +12 \text{ V}$ et $u_S = -12 \text{ V}$;
- II.B.1.3) le rôle de la diode D (dont la tension de seuil est nulle).

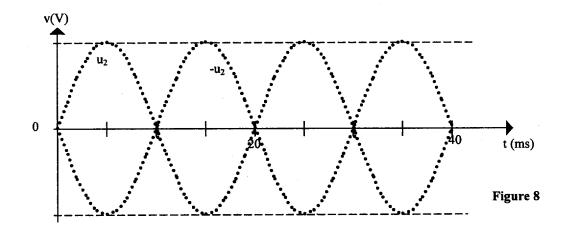
II.B.2) On désire limiter i_C à 0,5 A. Calculer :

- II.B.2.1) la valeur minimale de R_C qui permet de réaliser cette limitation ;
- II.B.2.2) la valeur maximale de R_B qui sature juste le transistor.
- II.B.3) On règle le multivibrateur de telle façon que le rapport cyclique α de la tension $u_S(t)$ ait pour valeur : $\alpha = 0,4$. L'allure de la tension $u_S(t)$ observée dans ces conditions est représentée figure 10 sur le document réponse n°2, page 9/9.
 - II.B.3.1) En fonction du signe de la tension u_s, indiquer les intervalles de conduction et préciser les états du transistor Tr (saturé ou bloqué), sur le graphe 1 du document réponse n°2.
 - II.B.3.2) Tracer, sur les graphes 2, 3 et 4 du document réponse n°2, les variations des tensions v_{BE}, v_{CE} et u sur deux périodes complètes.
 - II.B.4) On désigne par <u> la valeur moyenne de la tension u(t).
 - II.B.4.1) Etablir l'expression littérale de <u> en fonction de α et V_{alim}.
 - II.B.4.2) Calculer numériquement <u>.

PARTIE III: Etude du moteur à courant continu (4,5 points)


- Dans le sous-ensemble (transistor de puissance) étudié au paragraphe B de la partie II, on remplace la résistance R_C (voir figure 5) par un moteur, une inductance de lissage et une diode suivant le schéma représenté figure 6.
- Dans ces conditions, le moteur peut être considéré comme alimenté par une tension continue de valeur $U = \alpha$. V_{alim} .
- On donne pour valeur $V_{alim} = 30 \text{ V}$ et on désigne par α le rapport cyclique de la commande.

Le moteur utilisé possède les caractéristiques suivantes :

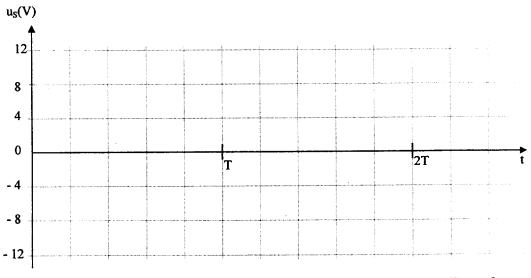
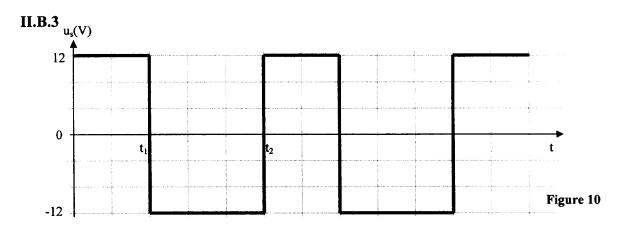

- o Inducteur à aimants permanents.
- o Intensité maximale du courant d'induit : 0,5 A.
- o Tension maximale d'induit : 30 V.
- o Résistance de l'induit : $R = 2 \Omega$.
- On rappelle l'expression de la f.é.m induite E (unité: V) en fonction de la vitesse de rotation n (unité: tr.min⁻¹): E = K.Φ.n.
- III.1) Représenter le schéma électrique équivalent de l'induit et flécher la tension U au bornes de l'induit et l'intensité I du courant dans l'induit.
 - III.1.1) Que représente la grandeur Φ dans l'expression ci-dessus ?
 - III.1.2) Justifier que pour le moteur utilisé on puisse écrire : E=k.n . On admettra que la valeur de k est : k=0,115 V.tr⁻¹.min
 - III.1.3) Écrire, en utilisant le schéma, la relation liant U, E et I pour le moteur à courant continu.
 - III.2) On s'intéresse au démarrage du moteur.
 - III.2.1) Donner l'expression de la tension minimale U pour que l'arbre moteur se mette à tourner.
- III.2.2) α étant initialement réglé à 0, calculer la valeur minimale de α pour que le rotor se mette à tourner sans dépasser l'intensité maximale admise.
 - III.3) Pour $\alpha = 0.4$ on a relevé : n = 100 tr/min. Calculer :
 - III.3.1) La tension aux bornes de l'induit U.
 - III.3.2) La f.é.m E.
 - III.3.3) L'intensité du courant d'induit I.
 - III.3.4) La puissance électromagnétique P_{EM} et le moment du couple électromagnétique T_{EM}.

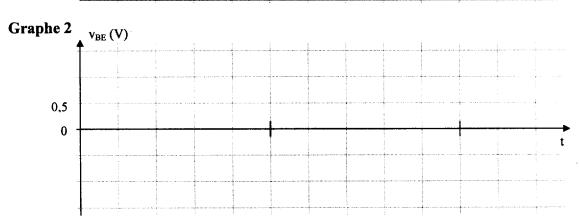
DOCUMENT REPONSE nº1

I.2 Schéma de branchement de l'oscilloscope

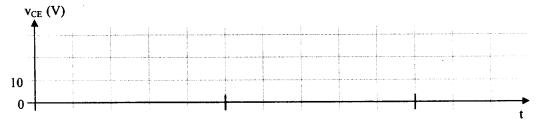
I.3.1 Allure de la tension v(t)

II.A.2.3 Allure de la tension $u_s(t)$ pour $\alpha = 0.4$

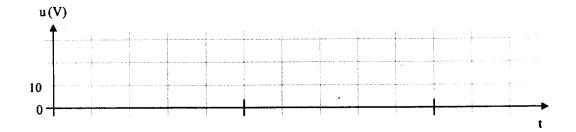




Figure 9

DOCUMENT REPONSE n°2



Graphe 1 Intervalles de conduction de Tr



Graphe 3

Graphe 4

