BREVET DE TECHNICIEN SUPÉRIEUR

Assistance Technique d'Ingénieur

Mathématiques Physique Appliquée

ÉPREUVE E3

UNITÉ U32

SCIENCES PHYSIQUES APPLIQUÉES

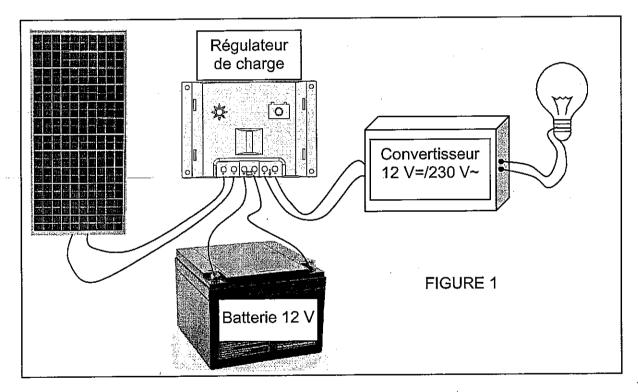
À l'exclusion de tout autre matériel, l'usage de la calculatrice est autorisé conformément à la circulaire n° 99-186 du 16 novembre 1999.

La clarté des raisonnements et la qualité de la rédaction interviendront dans l'appréciation des copies.

Documents à rendre avec la copie :

- Document Réponse n°1 page 13/15.
- Document Réponse n°2 page 14/15.
- Document Réponse n°3 page 15/15.

Dès que le sujet vous est remis, assurez-vous qu'il soit complet et comporte 15 pages numérotées de 1/15 à 15/15.

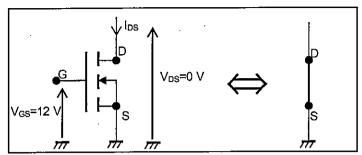

BTS ATI Unité U32 : Sciences Physiques Appliquées	Durée : 2 h	Session 2011
CODE SUJET : ATPHY	Coefficient : 2	Page 1 sur 15

ÉTUDE D'UNE INSTALLATION PHOTOVOLTAÏQUE AUTONOME

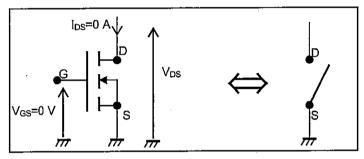
INTRODUCTION: On étudie une installation photovoltaïque autonome (figure 1) vendue en kit dans le commerce et destinée à alimenter en 230 V - 50 Hz de petites applications privées ou industrielles : éclairage d'une serre, alimentation d'une pompe, camping-car, ...

Le kit solaire est constitué des éléments suivants :

- > un panneau photovoltaïque polycristallin PX 55 (55 W),
- > un régulateur de charge pour la batterie,
- > une batterie au plomb 12 V (24 Ah),
- > un convertisseur 12 V continu / 230 V alternatif (150 W).


Le problème est composé de 4 parties indépendantes :

- Partie A : Panneau solaire (5,5 points).
- Partie B : Étude des phases de fonctionnement du régulateur (6 points).
- Partie C: Convertisseur 12 V= / 230 V~50 Hz (6,5 points).
- Partie D : Étude globale du système (2 points).

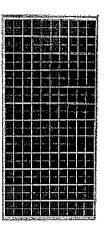

BTS ATI Unité U32 : Sciences Physiques Appliquées	Durée : 2 h	Session 2011
CODE SUJET : ATPHY	Coefficient : 2	Page 2 sur 15

Remarque importante: Les transistors figurant dans les schémas sont des transistors MOSFET (canal N) de puissance. Ces transistors fonctionnent en commutation et ils sont supposés idéaux.

ightharpoonup Si V_{GS} > 4 V, le transistor est saturé et V_{DS} = 0 V. Le transistor est équivalent à un interrupteur fermé.

Si V_{GS} = 0 V, le transistor est bloqué et I_{DS} = 0 A. Le transistor est équivalent à un interrupteur ouvert.

Les diodes ne sont pas considérées comme idéales.


BTS ATI Unité U32 : Sciences Physiques Appliquées	Durée : 2 h	Session 2011
CODE SUJET : ATPHY	Coefficient : 2	Page 3 sur 15

Partie A: Panneau solaire (5,5 points).

On réalise quelques essais et mesures sur le panneau photovoltaïque.

Le panneau (5,5 kg, 0,98 m x 0,45 m) est constitué de 36 cellules de silicium polycristallin. Le constructeur, sous un éclairement nominal de 112 000 lx, donne les caractéristiques suivantes:

·		
Puissance nominale P _n	55,00	(W)
Courant nominal In	3,20	(A)
Tension nominale U _n	17,10	(V)
Courant court-circuit Icc	3,50	(A)
Tension à vide U _{vide}	21,30	(V)

A.1 Caractéristique du panneau photovoltaïque.

On désire tracer la caractéristique U = f (I) du panneau.

- A.1.1 Sur le DOCUMENT RÉPONSE N°1, figure 9, on a commencé à tracer le schéma de mesures permettant de relever la caractéristique U = f (I). Compléter celui-ci en plaçant le voltmètre et la sonde de courant et en fermant le (ou les) interrupteur(s) nécessaire(s).
- A.1.2 Calculer la valeur de la résistance R_c pour obtenir le fonctionnement nominal.
- A.1.3 Pour relever la caractéristique, il est nécessaire de faire varier la résistance de la charge R_c. Choisir la charge adéquate dans la liste du TABLEAU 1 sur le DOCUMENT RÉPONSE N°1 et justifier le choix.
- A.1.4 Donner l'état des interrupteurs K1 et K2 (Fermé ou Ouvert) figurant sur le schéma (figure 9) pour relever la tension à vide U_{vide}.
- A.1.5 Sur le schéma de la figure 10 du DOCUMENT RÉPONSE N°1, fermer le (ou les) interrupteur(s) nécessaire(s) et placer la sonde de courant pour relever le courant de court-circuit.
- A.1.6 La caractéristique a été tracée dans de bonnes conditions d'ensoleillement, mais pas optimales.

 On a mesuré un éclairement E égal à 92000 lx. Le tracé de la caractéristique est donné figure 11, sur le DOCUMENT RÉPONSE N°2. Sur ce document, relever la tension à vide U_{vide} et le courant de court-circuit I_{cc} et les reporter dans le TABLEAU 2 du DOCUMENT RÉPONSE N°2.

BTS ATI Unité U32 : Sciences Physiques Appliquées	Durée : 2 h	Session 2011
CODE SUJET : ATPHY	Coefficient : 2	Page 4 sur 15

A.2 Courant de court-circuit et éclairement.

Une autre série de mesures a permis de relever l'évolution du courant de court-circuit l_{cc} quand l'éclairement E varie. Cette courbe (figure 2) montre que ce courant est proportionnel à E selon une loi l_{cc} = a·E.

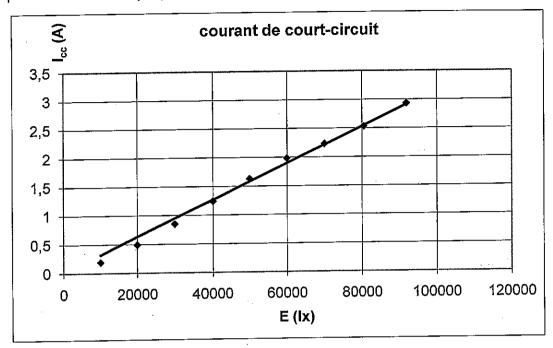


FIGURE 2

- A.2.1 Déterminer a Préciser son unité.
- A.2.2 Quel éclairement E est nécessaire pour obtenir le courant nominal de court-circuit prévu par le constructeur ?
- A.2.3 Justifier la valeur du courant de court-circuit l_{cc} trouvée à la question A.1.6.

A.3 Puissance.

Sur le DOCUMENT RÉPONSE N°2, figure 11, l'évolution de la puissance P fournie par le panneau solaire à la charge, sous un éclairement E = 92000 lx, est représentée.

- A.3.1 Sur la caractéristique U = f(l) de la figure 11, relever les valeurs de U_{max} et I_{max} qui correspondent au maximum de puissance et les reporter dans le TABLEAU 3 du DOCUMENT RÉPONSE N°2.
- A.3.2 Comparer les résultats de la question précédente aux données du constructeur.

BTS ATI Unité U32 : Sciences Physiques Appliquées	Durée : 2 h	Session 2011
CODE SUJET : ATPHY	Coefficient: 2	Page 5 sur 15

• Partie B : Étude des phases de fonctionnement du régulateur (6 points).

Le constructeur fournit le schéma de l'installation figure 3. On a relevé les chronogrammes des courants I_{sol} et I_{bat} (figure 4) et des tensions U_{sol} et U_{bat} (figure 5) dans des conditions d'ensoleillement E=80000 lx. La caractéristique U=f(I) a donc changé et figure sur le DOCUMENT RÉPONSE N°3 figure 12.

La batterie étant en cycle de fin de charge, le régulateur hache périodiquement le courant. Sur les chronogrammes, pendant une période, on identifie deux phases de fonctionnement notées 1 et 2.

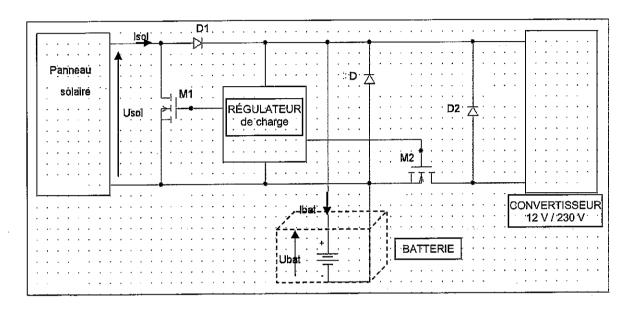


FIGURE 3

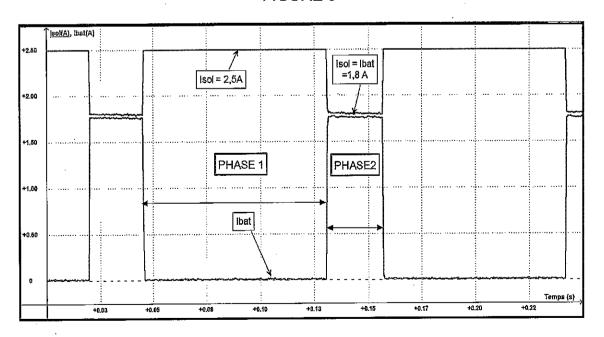


FIGURE 4

BTS ATI Unité U32 : Sciences Physiques Appliquées	Durée : 2 h	Session 2011
CODE SUJET : ATPHY	Coefficient : 2	Page 6 sur 15

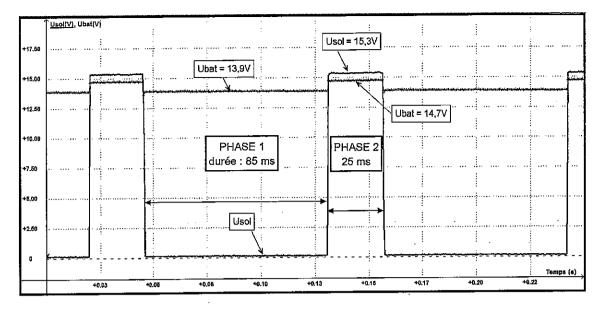


FIGURE 5

B.1 Étude de la phase 1.

Pendant la phase 1, U_{bat} = 13,9 V et I_{sol} = 2,5 A. Remplir le TABLEAU 4 du DOCUMENT RÉPONSE N°3 avec les valeurs manquantes (U_{sol} et I_{bat}) et indiquer l'état du transistor MOSFET M1 (B pour Bloqué ou S pour Saturé) et l'état de la diode D1 (P pour Passante ou B pour bloquée).

B.2 Étude de la phase 2.

- B.2.1 Pendant la phase 2, U_{bat} = 14,7 V et U_{sol} = 15,3 V. I_{sol} = I_{bat} = 1,8 A. Déduire de ce qui précède, l'état du transistor MOS M1 et celui de la diode D1 dans le TABLEAU 4 du DOCUMENT RÉPONSE N°3.
- B.2.2 Quel composant fait chuter la tension du panneau de U_{sol} = 15,3V à U_{bat} = 14,7 V aux bornes de la batterie ?

B.3 Modèle équivalent de la batterie.

Le modèle de celle-ci sera défini par la connaissance de deux paramètres : la Force Électro-Motrice E et la résistance interne r comme l'indique la figure 13 du DOCUMENT RÉPONSE N°3.

- B.3.1 Détermination de la tension à vide aux bornes de la batterie.
 - B.3.1.1 En utilisant le TABLEAU 4 du DOCUMENT RÉPONSE N°3, donner la valeur du courant de batterie l_{bat} quand le convertisseur n'est pas directement alimenté par le panneau solaire (autrement dit en phase 1).
 - B.3.1.2 Que vaut, dans ces conditions, la valeur de la tension aux bornes de la batterie ?

BTS ATI Unité U32 : Sciences Physiques Appliquées	Durée : 2 h	Session 2011
CODE SUJET : ATPHY	Coefficient : 2	Page 7 sur 15

B.3.2 Modèle équivalent complet.

Compléter le schéma équivalent de la batterie sur la figure 13 du DOCUMENT RÉPONSE N°3, en précisant la valeur de la force électromotrice et en fléchant la tension aux bornes de la batterie.

- B.3.3 Fonctionnement en générateur de la batterie.
 - B.3.3.1 Quelle est la valeur du courant qui fera chuter la tension U_{bat} à la valeur de 12 V ?
 - B.3.3.2 Montrer que, dans les conditions précédentes, la puissance P_{bat} fournie par la batterie vaut 51,8 W.

BTS ATI Unité U32 : Sciences Physiques Appliquées	Durée : 2 h	Session 2011
CODE SUJET : ATPHY	Coefficient: 2	Page 8 sur 15

Partie C: Convertisseur 12 V= / 230 V~50 Hz (6,5 points).

Le convertisseur 12 V / 230 V / 50 Hz comprend deux parties. La première partie élève la tension U_{bat} de la batterie à U_{dec} = 300 V continu. La seconde partie permet l'étude de la conversion de la tension continue U_{dec} = 300 V en une tension alternative u_{ond} .

Pour observer la tension u_{ond} à la sortie du convertisseur, on utilise une sonde différentielle 1/200, qui produit la tension u_s .

C.1 Étude du chronogramme.

Sur le chronogramme figure 6, les échelles sont les suivantes : 5 ms/division en abscisse et 500 mV/division en ordonnée.

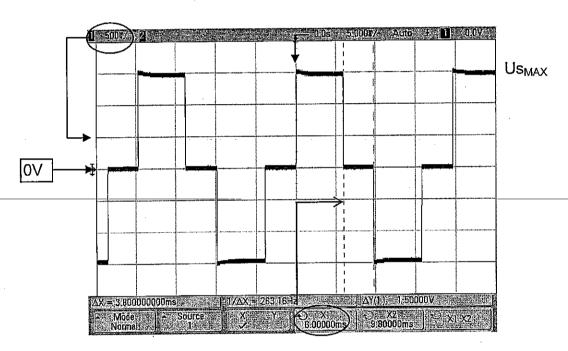


FIGURE 6

- C.1.1 Détermination de la fréquence de fonctionnement du convertisseur.
 - C.1.1.1 Quelle est la période du signal représenté figure 6 ?
 - C.1.1.2 Déduire de ce qui précède la fréquence du signal.
 - C.1.1.3 La présence de la sonde a-t-elle une influence sur la fréquence du signal u_{ond} ?

BTS ATI Unité U32 : Sciences Physiques Appliquées	Durée : 2 h	Session 2011
CODE SUJET : ATPHY	Coefficient : 2	Page 9 sur 15

- C.1.2 Détermination de la valeur maximale du signal en sortie du convertisseur.
 - C.1.2.1 Mesurer la valeur maximale Us_{MAX}.
 - C.1.2.2 Déduire de ce qui précède la valeur maximale de Uond.
 - C.1.2.3 À l'aide des mesures de temps effectuées avec les curseurs sur le chronogramme de la figure 6, calculer la valeur efficace Uond eff de uond.
 - C.1.2.4 L'utilisateur souhaite disposer d'une tension dont la valeur efficace est égale à 230 V. La valeur trouvée à la question précédente est-elle compatible avec ce souhait ?

C.2 Étude du spectre.

Le spectre du signal de la figure 6 est représenté figure 7. Les échelles sont les suivantes : 50 Hz/division en abscisse (0 Hz à gauche, fréquence centrale 250 Hz) et 10 dB/division en ordonnée.

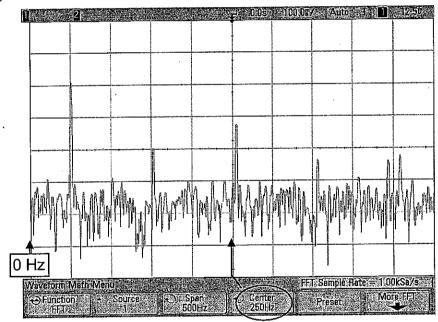


FIGURE 7

- C.2.1 Élaboration du cahier des charges.
 - C.2.1.1 Quelle doit être la forme du signal mis à la disposition de l'utilisateur pour respecter le cahier des charges ?
 - C.2.1.2 Quelle doit être la fréquence du signal décrit à la question précédente pour respecter le cahier des charges ?

BTS ATI Unité U32 : Sciences Physiques Appliquées	Durée : 2 h	Session 2011
CODE SUJET : ATPHY	Coefficient : 2	Page 10 sur 15

- C.2.2 Analyse du signal de la figure 7.
 - C.2.2.1 Quelle est la valeur de la fréquence fondamentale ?
 - C.2.2.2 Quel est l'écart, exprimé en dB, entre l'amplitude de composante fondamentale à la fréquence définie à la question précédente et celle de l'harmonique de rang 3 ?

C.3 Filtrage.

L'utilisateur désire que la tension u_{ond} soit purement sinusoïdale.

On utilise un filtre passe-bas dont la fréquence de coupure est telle que : 50 Hz < $f_{c}\!<$ 150 Hz

La structure du filtre étudié est donnée figure 8

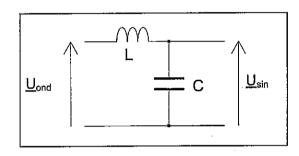
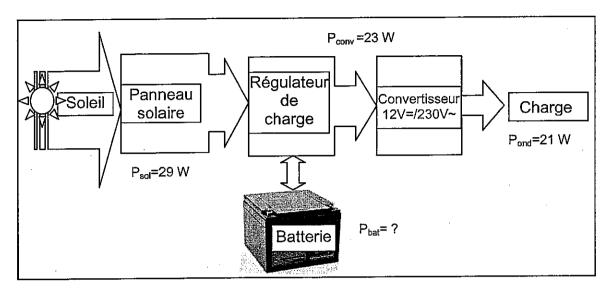


FIGURE 8

La fonction de transfert du filtre précédent est la suivante :

$$\underline{\mathbf{T}} = \frac{\underline{\mathbf{U}}_{\text{sin}}}{\underline{\mathbf{U}}_{\text{ond}}} = \frac{1}{1 - \left(\frac{\omega}{\omega_0}\right)^2} = \frac{1}{1 - \left(\frac{f}{f_0}\right)^2}.$$


Son module vaut alors : $T_f = \frac{1}{1 - \left(\frac{f}{f_0}\right)^2}$

- C.3.1 La fréquence f_0 vaut 35,4 Hz, calculer le module T_{50} de T pour f = 50 Hz, puis T_{150} pour f = 150 Hz.
- C.3.2 À partir des questions précédentes, conclure sur le respect du cahier des charges.

BTS ATI Unité U32 : Sciences Physiques Appliquées	Durée : 2 h	Session 2011
CODE SUJET : ATPHY	Coefficient : 2	Page 11 sur 15

• Partie D : Étude globale du système (2 points).

Le kit solaire est utilisé pour alimenter un petit appareillage électrique. On relève alors certaines puissances échangées ainsi que leur sens de transfert :

- D.1 Calculer le rendement η_{conv} du convertisseur 12 V / 230 V. Par la suite on supposera ce rendement constant.
- D.2 Étude de Pbat.
 - D.2.1 En supposant le régulateur de charge sans pertes, calculer la puissance P_{bat} échangée avec la batterie.
 - D.2.2 Cette puissance est-elle absorbée ou fournie par la batterie ?
 - D.2.3 La batterie est-elle en charge ou non?
- D.3 Étude complète de l'installation.

En plus de l'appareillage qui consomme toujours 21 W et P_{sol} valant toujours 29 W, l'utilisateur prévoit l'usage d'un moteur pour puiser de l'eau. Ce moteur consomme 44 W.

- D.3.1 Quelle est la puissance P_{conv} que devra fournir le convertisseur ?
- D.3.2 L'ensoleillement étant le même, quelle est la puissance que doit fournir la batterie que l'installation fonctionne ?
- D.3.3 Les caractéristiques de cette batterie sont-elles compatibles avec la question précédente ?
- D.3.4 La batterie est-elle en charge ou non?

BTS ATI Unité U32 : Sciences Physiques Appliquées	Durée : 2 h	Session 2011
CODE SUJET : ATPHY	Coefficient : 2	Page 12 sur 15

DOCUMENT RÉPONSE N°1 À rendre avec votre copie

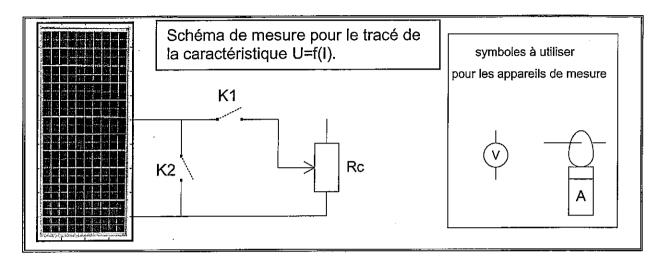


FIGURE 9

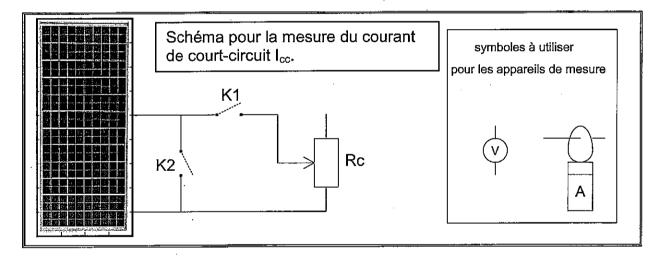


FIGURE 10

	Potentiomètre 100Ω - 500 mW	Rhéostat 4 Ω - 10 A	Rhéostat 32 Ω - 3,5 A
Choix retenu			
Justification			

TABLEAU 1

BTS ATI Unité U32 : Sciences Physiques Appliquées	Durée : 2 h	Session 2011
CODE SUJET : ATPHY	Coefficient : 2	Page 13 sur 15

DOCUMENT RÉPONSE N°2 À rendre avec votre copie

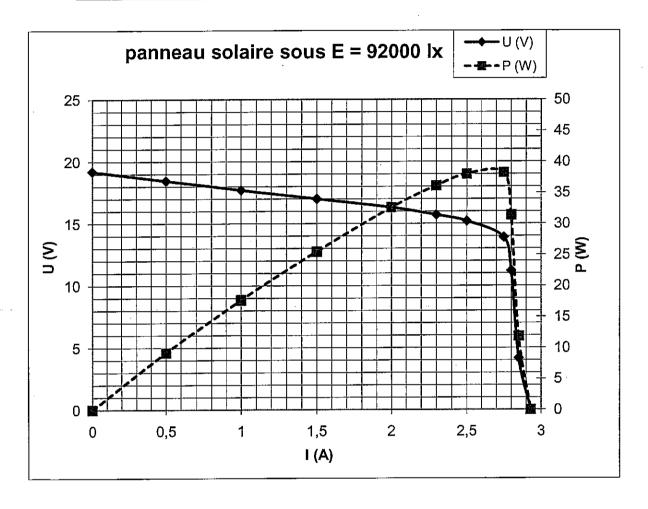


FIGURE 11

U_{vide}	(V)
l _{cc}	(A)

TΑ			Λ 1		_
1 4	чн	-	Δ		
	\LI		$\overline{}$	J	_

U _{max}	(V)
I _{max}	(A)

TABLEAU 3

BTS ATI Unité U32 : Sciences Physiques Appliquées	Durée : 2 h	Session 2011
CODE SUJET : ATPHY	Coefficient : 2	Page 14 sur 15

DOCUMENT RÉPONSE N°3 À rendre avec votre copie

panneau solaire sous E = 80000 lx

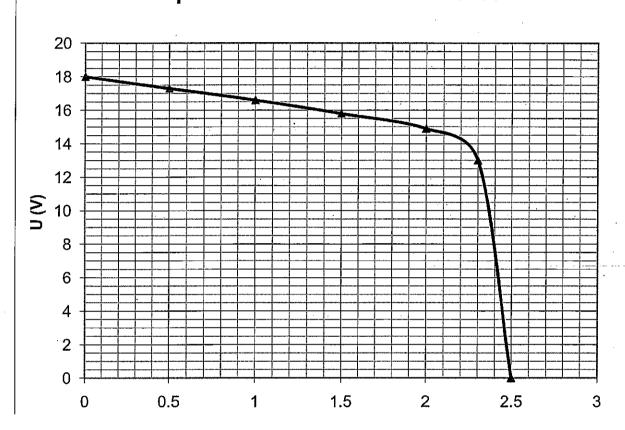


FIGURE 12

	Phase 1	Phase 2
U _{bat}	13,9 V	14,7 V
U _{sol}		15,3 V
l _{bat}		1,8 A
I _{sol} .	2,5 A	1,8 A
M1		
D1		

TABLEAU 4

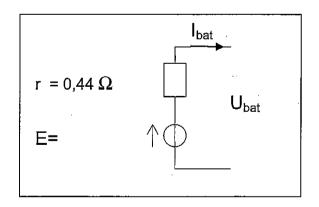


FIGURE 13

BTS ATI Unité U32 : Sciences Physiques Appliquées	Durée : 2 h	Session 2011
CODE SUJET : ATPHY	Coefficient : 2	Page 15 sur 15