Brevet de Technicien Supérieur ASSITANCE TECHNIQUE D'INGENIEUR SESSION 2002

U 42

EPREUVE E.4: ETUDE D'UN SYSTEME PLURITECHNOLOGIQUE

Sous-épreuve : Vérifications des performances mécaniques et électriques d'un système pluritechnologique

Durée : 3 heures Coefficient : 3

Aucun document n'est autorisé

Matériel autorisé :

Calculatrices de poche, y compris, les calculatrices programmables, alphanumériques, ou à écran graphique, à condition que leur fonctionnement soit autonome, et qu'il ne soit pas fait usage d'imprimante.

Documents remis en début d'épreuve :

Dossier Système (vert)
DS 1 à DS 5

DT 1a et DT 1b (format A3)

DT 2 à DT 13

Dossier Réponse (blanc) DR 1 à DR 16

Documents à rendre obligatoirement en fin d'épreuve :

Dossier Réponse complété

Recommandations:

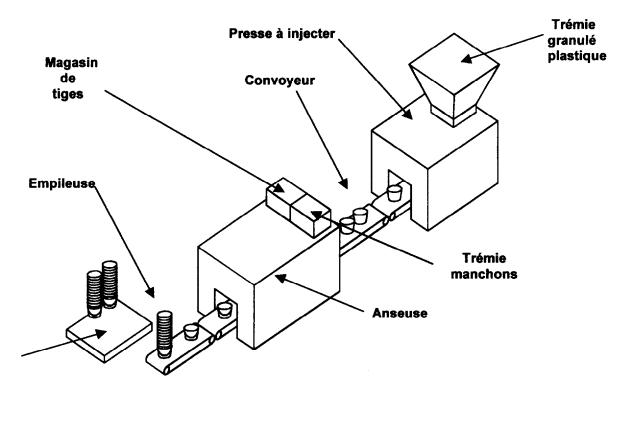
- ▷ Il est indispensable de commencer par lire le Dossier Système
- ▶ Pour chaque question du Dossier Réponse :
- il est impératif de se reporter préalablement aux pages indiquées du **Dossier Technique**.
- les candidats formuleront les hypothèses qu'ils jugeront nécessaires.

Sous épreuve U 42 : Etude des spécifications générales d'un système pluri-technologique

DOSSIER SYSTEME

LIGNE D' ASSEMBLAGE DE SEAUX

Ce dossier comprend les documents DS1 à DS5

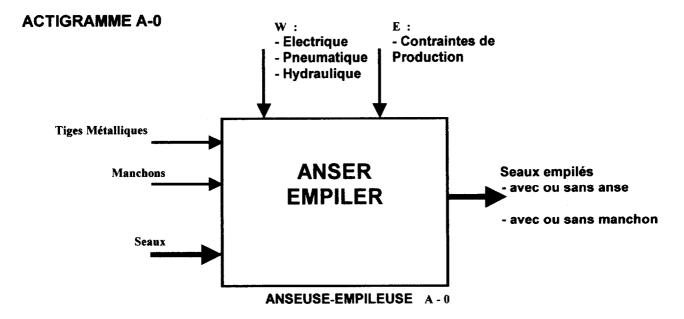

NB : Ce dossier est à lire avant de commencer l'épreuve.

PRESENTATION GENERALE

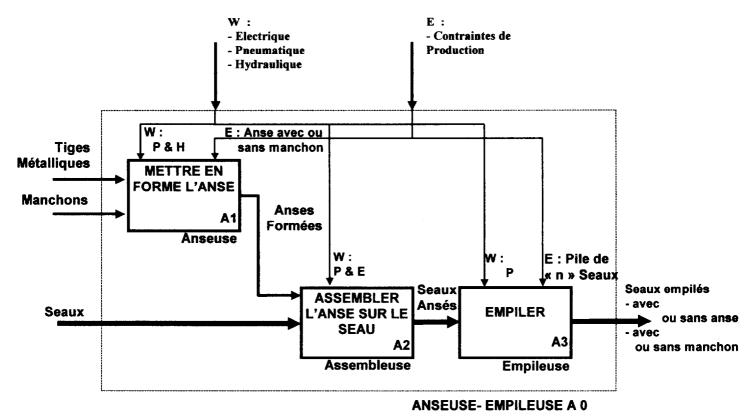
La socièté JOKEY FRANCE est spécialisée dans la fabrication de seaux en matière plastique, de différentes formes et de différentes tailles (de formes rondes, carrées ou rectangulaires; de différentes couleurs avec ou sans couvercle; avec ou sans anse ; avec ou sans manchon plastique) selon la demande du client.

Les seaux sont fabriqués à partir de presses à injecter. A la sortie, une machine appelée 'Anseuse Empileuse' assure la pose d'une anse si nécessaire, puis empile les seaux.

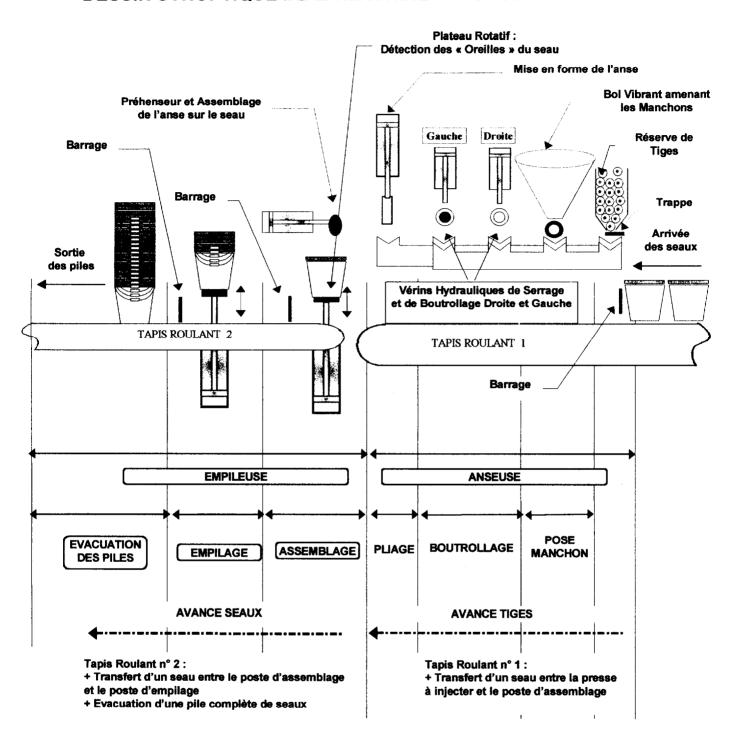
DESSIN SYNOPTIQUE DE L'ENSEMBLE DE FABRICATION DE SEAUX


Palette de stockage

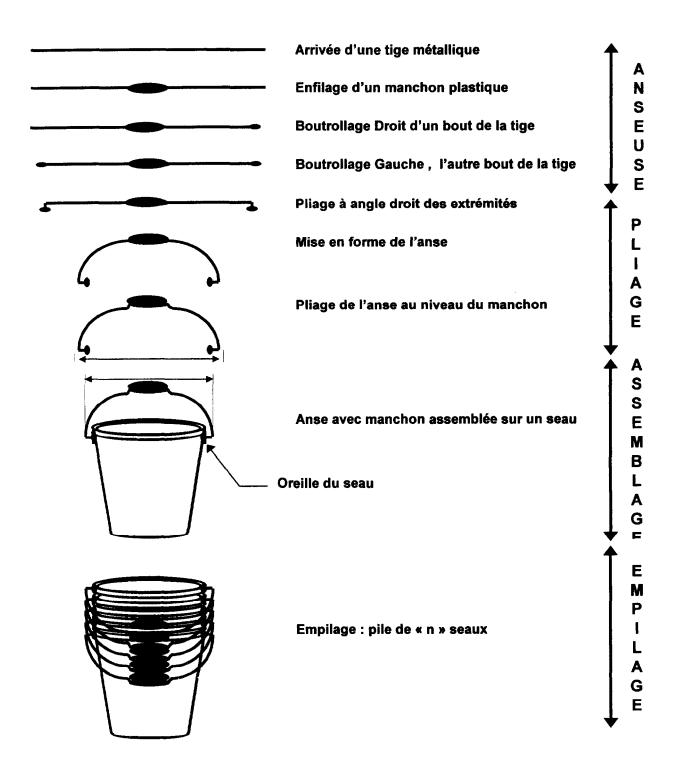
Notre étude portera sur l'Anseuse Empileuse, installée sur un ensemble mobile, permettant des changements de fabrication plus faciles.


Elle dispose également d'un magasin de tiges et d'une trémie contenant des manchons plastiques (ou poignées) .

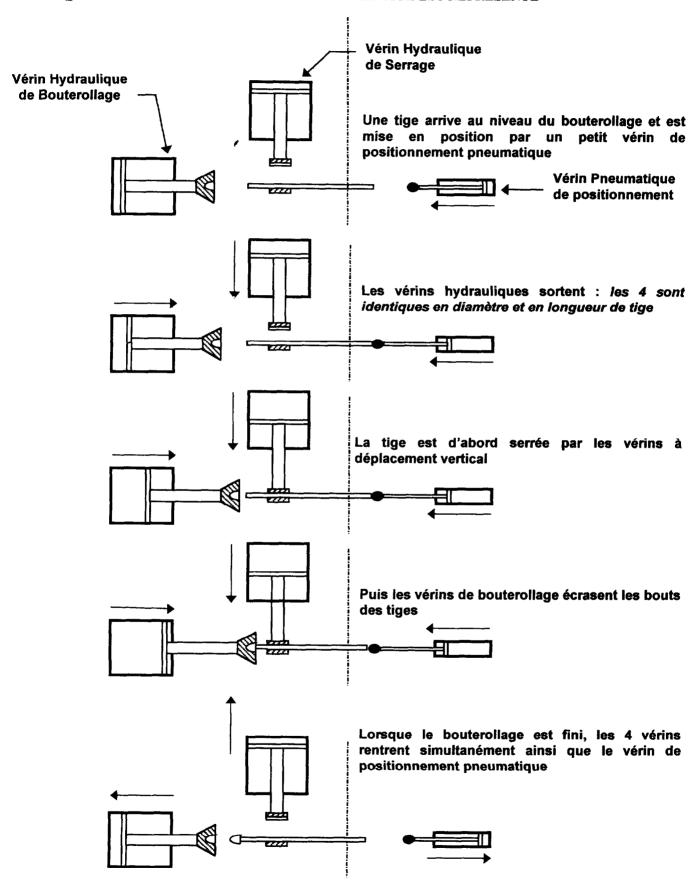
Les piles de seaux sont évacuées par un opérateur manuellement à la sortie de l'empileuse sur une palette de stockage. L'opérateur, avant le transfert enfile une housse de protection.


PRESENTATION FONCTIONNELLE

ACTIGRAMME A0



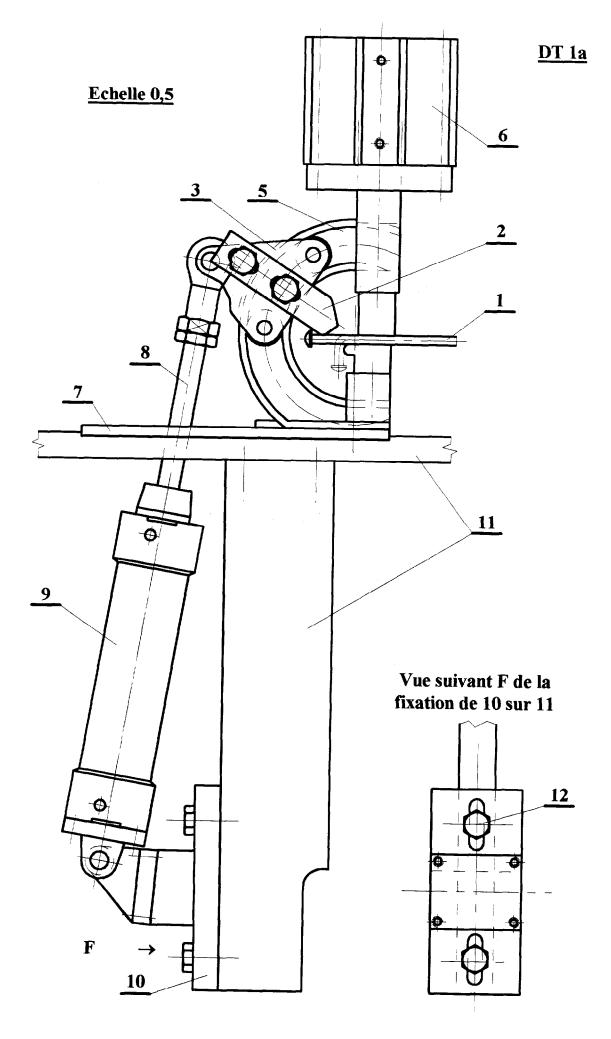
DESSIN SYNOPTIQUE DE LA MACHINE : ANSEUSE -EMPILEUSE

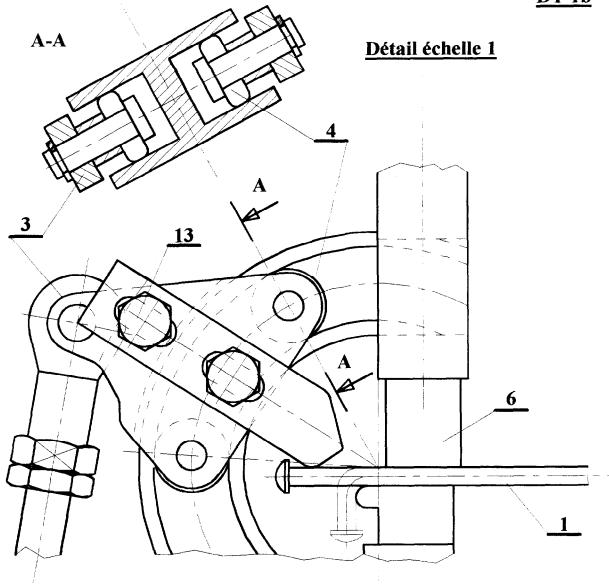

Remarque : les échelles ne sont pas respectées !

PRINCIPE DE FABRICATION D'UNE PILE DE SEAUX ANSES AVEC MANCHON

PRINCIPE DU BOUTROLLAGE

REMARQUE: SEUL LE BOUTROLLAGE GAUCHE DE LA TIGE EST REPRESENTE


Sous épreuve U 42 : Etude des spécifications générales d'un système pluri-technologique


DOSSIER TECHNIQUE

LIGNE D'ASSEMBLAGE DE SEAUX

Ce dossier comprend les documents DT 1a, 1b à DT 13

Les documents DT 1a et DT 1b sont à juxtaposer pour constituer un format A 3

Rep	Nbre	Désignation	Matière	Observations
1	1	Anse à couder		
2	1	Doigt de coudage		
3	1	Chariot		
4	4	Galets		
5	1	Guide		
6	1	Vérin de bridage Hoerbiger R 6020-50		
7	1	Semelle réglable		
8,9	1	Vérin de coudage Hoerbiger AZ5 032-100		
10	1	Support de vérin		
11	1	Bâti		
12	2	Vis de fixation HM 8-40		
13	2	Vis de fixation HM 8-35		

STATION DE COUDAGE Nomenclature réduite

Caractéristiques selon VDI 3294

			T	-rie-						
	ractéristiques	Symbole	Unité	Obse	ervatio	ns	···			
Ca	ractéristiques gér	érales								
Dé	signation			vérin						
Sér	rie			AZ5						
Tyé	de construction				double effet avec amortissemen pour détection magnétique					
Мо	de de fixation			voird	limens	ions				
Rac	ccordement			orific	es tara	udés				
	npérature biante	ϑ_{\min}	လို့	-20 +80	Rema En ca	ırque: s d'utili	sation			
	npérature luide	ϑ _{max}	°C	+80			de 0°C s consi			
Poi	ds (masse)		kg	voirta	ableau					
Pos	sition de montage			indiffe	érente					
Flui	de			air filt lubrifi	air filtré, avec ou sans lubrification					
Lub	rification			parbi	rouillar atible	d d'hui avec le	le Perbu	nan		
ž	Tube du vérin			alumi	nium					
Matériaux	Fonds			alumi	aluminium					
Σ	Tige de piston			acierinox						
Car	actéristiques pne	umatiques	<u>.</u>							
Pres	ssion nominale	p _n	bar	6						
Pres	ssion de service	p _{min}	bar bar	0,5 10						
Alés	age		mm	32	40	50	63	80	100	
Rac	cordement			G1/8	G1/4	G1/4	G3/8	G3/8	G1/2	
	nètre de la tige iston		mm	12	16	20	20	25	25	
Filet de pi	age de la tige iston			M10 x1,25	M12 x1,25	M16 x1,5	M16 x1,5	M20 x1,5	M20 x1,5	
Cou	rses *			course	es max e des ti	. voir d ges de	iagram pistor	me de 2.05.0	002F	
Effor	rt et sommation d'air			voir fiche technique 2.05.001F						
Amo	Amortissement			avant, arrière, réglable						
Cour d'am	rse iortissement	1 1-	Ø vér. mm	32 21	40 25	50 28	63 30	80 30	100 37	
		1.,		1		-		55	٠,	

* Courses standards : 25, 50, 80, 100, 125, 150,voir tableau

Poids (masse) kg

Type de	Alés	age									****	
fixation	32		40		50		63		80		100	
	*1	*2	1	2	1	2	1	2	1	2	1	2
Vérin de base	0,65	0,20	1,10	0,312	1,60	0,422	2.15	0.532	3,45	0.78	4,60	1,03
A	0,85	1	1,35	1	1,80	1 ' -	2,55	-,	4,25	0,,,0	5,50	1.,00
В	0,75	1	1,20	1	1,65	1 1	2,35	1	3,85	1	5,20	
BA	0,85	1	1,30	1	1,70	i l	2,55		4,25	1	5,60	Ì
BAS	0,80	1	1,30	1 .	1.70	1	2,45		.,	1	5,50	ĺ
C	0,80	1	1,20	1	1,65	1	2,40		3,95		5,50	ł
D	0,80	1	1,20	1 .	1,65	1	2,40	1	3,95	į	5.50	ł
EN	1,05	1	1.80	1	2,40	1	4.50		5.20		7.10	f

*1 = Poids pour vérin de 100 mm de course

*2 = Poids supplémentaire par 100 mm de course

Exemple de désignation : Vérin Hoerbiger-Origa AZ5 032-100

Série AZ5: vérin double effet avec amortissement pour détection magnétique

032-100: diamètre piston 32 mm, course 100 mm

Vérin

DT 2

ø 32-100 mm

seion ISO 6431 VDMA 24562 et CETOP RP43P

Versions:

double effet avec amortissement pour détection magnétique

Série AZ....

AZ5...

Versions spéciales:

- version H pour fonctionnement hydraulique p_{max} voir tableau de caractéristiques
- version pour températures élevées (+150°)
 sans aimants pour détection magnétique
- version à tirants
- avec une plaque d'apaptation pour le montage du distributeur

Selon la course du vérin, un ou plusieurs capteurs peuvent être montés. Ces capteurs permettent la détection magnétique de fin de course et de positions intermédiaires du vérin.

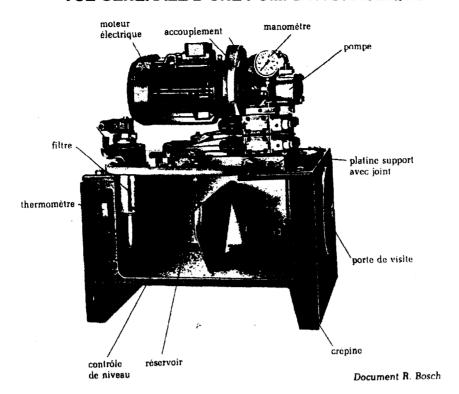
Livré avec: 1 vérin

1 écrou de tige

Le vérin est livré sans capteurs - veuillez les commander séparement.

Effort du vérin et consommation d'air pour vérins standard

		Alésa 8	ge du p	iston (n	nm) 16	20	25	32	40	50	63	80	100	125	160	200	250
Surface du	Α	0,5	0,8	1,1	2,0	3,1	4,9	8,0	12,6	19,6	31,2	50,0	78,0	122,7	201,0	314,1	490.8
piston * (cm²)	В	0,38	0.65	0.85	1.7	2,6	4,1	6,9	10,6	16,5	28,0	45,4	73,6	114,7	188,5	301,5	471,2
	1	0,0045	0,007	0,010	0,018	0,028	0,044	0,072	0,113	0,176	0.281	0,452	0,706	1,104	1,809	2,827	4,417
	2	0,0090	0,014	0,020	0,036	0,056	0,088	0,144	0,226	0,353	0,561	0,905	1,413	2,209	3,619	5,654	8,835
	3	0,0135	0,021	0,030	0,054	0,084	0,132	0,217	0,339	0,530	0,842	1,357	2,120	3,313	5.428	8,482	13,253
	4	0,0180	0,028	0,040	0,072	0,113	0,176	0,289	0,452	0,707	1,122	1,809	2,827	4,417	7,238	11,309	17,671
Effort approx. piston (kN)	5	0,0225	0,035	0,050	0,090	0,141	0,220	0,362	0,565	0,884	1,402	2,262	3,534	5,522	9,407	14,137	22.089
à bar	6	0,0270	0,042	0,060	0,108	0,169	0,265	0,434	0,678	1,060	1,683	2,714	4,241	6,626	10,857	16,964	26,507
	7	0,0315	0,049	0,070	0,126	0,197	0,309	0,506	0,792	1,237	1,963	3,167	4,948	7,731	12,666	19,792	30,952
	8	0.0360	0,056	0.080	0,144	0,226	0,353	0,579	0,905	1,414	2,244	3,619	5,654	8,835	14,476	22,619	35,342
	9	0,0405	0,063	0,090	0,162	0,254	0,397	0,651	1,018	1,590	2,524	4,071	6,361	9,940	16,286	25,447	39,760
	10	0.0450	0,070	0,100	0,180	0,282	0,441	0,723	1,131	1,767	2,805	4,523	7,068	11,044	18,095	28,274	44,178
	1	0,010	0,016	0,02	0,04	0,06	0,09	0,18	0,30	0,46	0,71	1,20	1,90	2,65	4,60	6,90	10,80
Consommation	2	0,015	0,024	0,03	0,06	0,09	0,14	0,27	0,43	0,69	1,00	1,85	2,85	4,10	6,90	10,40	16,30
d'air approx.	3	0,020	0,032	0,04	0,08	0,12	0,19	0,36	0,58	0,92	1,40	2,45	3,80	5,50	9,20	13,90	21,80
(dm³/100 mm de course	4	0,025	0,040	0,05	0.10	0,15	0,24	0,45	0,72	1,15	1,75	3,00	4,75	6,95	11,50	17,40	27,20
àbar¹)	5	0,030	0,048	0,06	0,12	0,18	0,29	0,55	0,86	1,40	2,10	3,65	5,70	8,40	13,80	20,90	32,70
Ces valeurs	6	0,035	0.056	0.07	0,14	0,21	0,34	0,65	1,00	1,60	2,50	4,25	6,60	9.70	16,00	24,40	38,20
concernent le côté A (voir	7	0,040	0,064	0,08	0,16	0,25	0,39	0,73	1,15	1,80	2,85	4,85	7,60	11,15	18,30	27,90	43,70
schéma)	8	0,045	0,072	0,09	0,18	0,28	0,41	0,82	1,30	2,00	3,20	5,45	8,50	12,55	20,60	31,50	49,20
	9	0,050	0,080	0,10	0,20	0,31	0,49	0,90	1,45	2,30	3,55	6,10	9,50	14,00	22,90	35,60	54.60
	10	0,055	0,088	0,11	0,22	0,34	0,53	1,00	1,60	2,50	3,90	6,40	10,40	15,40	25,20	38,50	60,10


^{*} A = surface de piston côté fonds B = surface de piston côté tige

Nota : Les valeurs indiquées concernent le côté A. Les valeurs concernant le côté B sont proportionnelles aux valeurs de A. Coefficient de proportionnalité : rapport des surfaces B / A.

¹ Consommation d'air en dm³/100 mm de course. Tenir compte en plus du volume des tuyauteries.

VUE GENERALE D'UNE POMPE HYDRAULIQUE

CARACTERISTIQUES GENERALES DES POMPES HYDRAULIQUES

		Paramètres				
Types de pompes	Pression utilisation	Rendement	Avantages et caractéristiques	Vitesse de tr/n		
	maxi		caracteristiques	Maxi	Mini	
Pompes à vis	jusque 120 bars	9,0	- Silencieuse - Débit régulier et important	3 000		
Pompes à engrenages 1. Basse pression extérieure 2. Moyenne pression ext. 3. Intérieure	70 bars 170 bars 250 bars	0,7 0,8 0,9	- Bon marché - Simple - Robuste - Elles s'amorcent automatiquement	2 500 6 000 3 000	500 500 500	
Pompes à palettes 1. Palettes non réglables 2. Palettes réglables	175 bars 120 bars	0,9 0.9	- Bruit modéré - Débit réglable par modification de l'excentration du stator	2 000 2 000	500 500	
Pompes à pistons 1. Pistons en ligne 2. Pistons radiaux 3. Pistons axiaux - barillet incliné	500 bars 400 bars 350 bars	0,95 0,9 0,9	Élevées Élevées Très bonnes	1 800 2 000 1 400	100 50 Gros modèl	
- plateau incliné barillet fixe - plateau incliné	continu) 400 bars	0,9	Sens de rotation déterminé	2500 de 1500 à 3500 de 1500	modėl	
- plateau incline barillet tournant	250 bars	0,9		de 1500 à 3500		

FORMULES GENERALES DE CALCUL DE POMPE HYDRAULIQUE

 $P_{\text{moteur de pompe}} = p * Q / (600 * \eta_{\text{pompe}})$

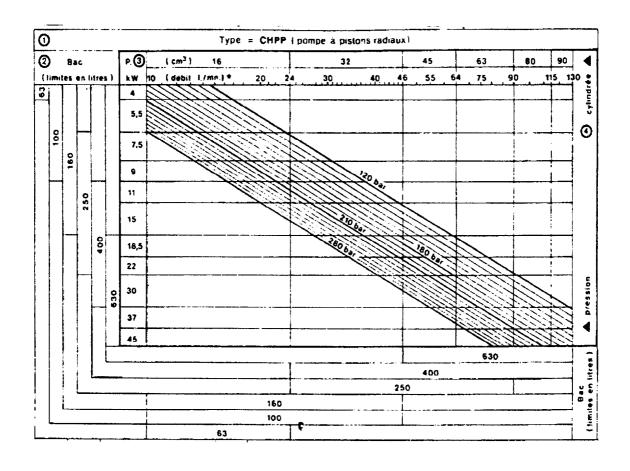
p: pression en Bars

Q : débit de la pompe en l / mn ou dm³ / mn

P moteur de pompe : en kW

Q = S * V

Q: débit de la pompe en cm³ / s


S : section intérieure de vérin en cm² V : vitesse de sortie du vérin en cm / s

Q = cyi * N

Q : débit de la pompe en l / mn cyl : cylindrée de la pompe en l

N : fréquence de rotation de la pompe en tr / mn

Abaque général pour le dimensionnement des pompes hydrauliques à pistons radiaux

Références et Caractéristiques « CONTACTEURS »

	50/60	moteur 0 Hz e	rs trip in cate				Courant assigné d'emploi en AC-3 440V	au: ins	ntacts dilaires tantanés	Référent à comple repère d Fixation, raccorde	éter par e la tens	le sion (2)			Masse -
		/ 380V		J 440'	V 500V	660V	jusqu'à	ì	- (ensions suelles		
ar mind	kW.	kW	kW	kW	kW	kW	A								kg
	2,2	4	4	4	5,5	5,5	9	-		LC1-D0	900ee (3) B	7 E7 F7	M7 Q7	0,320
						•		1_		LC1-D0	91000(4) B	7 E7 F7	M7 Q7	0,320
									_1	LC1-D0	901ee (4) B	7 E7 F7	M7 Q7	0,320
	3	5,5	5,5	5,5	7,5	7,5	12	-		LC1-D1	200 00 (3) B	7 E7 F7	M7 Q7	0,320
								1		LC1-D1	210 0 o (4) B	7 E7 F7	M7 Q7	0,320
									1	LC1-D1	201●●(4) B	7 E7 F7	M7 Q7	0,320
	4	7,5	9	9	10	10	18	=_		LC1-D1	800ee (3) B	7 E7 F7	M7 Q7	0,320
								1_		LC1-D1	B100 0 (4) B	7 E7 F7	M7 Q7	0,350
					_				_ 1 _	LC1-D1	801ee (4) B	7 E7 F7	M7 Q7	0,350
	5,5	11	11	11	15	15	25	=_	<u>-</u>	LC1-D2	5 00 00 (3) B	7 E7 F7	M7 Q7	0,320
İ								1_	-	LC1-D2	510 • • (•	4) B	7 E7 F7	M7 Q7	0,505
								-	1	LC1-D2	501 •• (4) B	7 E7 F7	M7 Q7	0,505
	7,5	15	15	15	18,5	18,5	32	=_		LC1-D3:	20000 (3) B	7 E7 F7	M7 Q7	0,320
								1_		LC1-D3	21000	В	7 E7 F7	M7 Q7	0,525
									_1	LC1-D3:	20100	В	7 E7 F7	M7 Q7	0,525
	11	18,5	22	22	22	30	40	1	1	LC1-D4	01100(4	4) B	5 E5 F5	M5 Q5	1,150
	15	22	25	30	30	33	50	1	_1	LC1-D5	01100	В	5 E5 F5	M5 Q6	1,150
	18,5	30	37	37	37	37	65	1_	_1	LC1-D6	51100	В	5 E5 F5	M5 Q5	1,150
	22	37	45	45	55	45	80	1_	1	LC1-D8	01100	B !	5 E5 F5	M5 Q5	1,500
•	25	45	45	45	55	45	95	1_	1	LC1-D9	51100	B4	5 E5 F5	M5 Q6	1,500

Caractéristiques Puissances-Tensions-Courants des Moteurs Asynchrones Triphasés Moteurs triphasés 4 pôles 50/60 Hz

Puiss	ance	200/ 208 V	220 V	230V	380 V	400 V	415 V	433/ 440 V	460v	500/ 528 V	575 V	660 V	690 V	750 V	1000 V
kW	HP	A	A	A	Α	A	Α	Α	A	A	A	A	A	A	Α
0,37	0,5	2	1,8	2	1,03	0,98		0,99	1	1	0,8	0,6			0,4
0,55	0,75	3	2,75	2,8	1,6	1,5		1,36	1,4	1,21	1,1	0,9			0,6
0,75	1:	3,8	3.5	3,6	2	1,9	2	1,68	1,8	1,5	1,4	1,1			0,75
1.1	1,5	5	4,4	5,2	2,8	2,5	2,5	2,37	2,6	2	2,1	1,5			1
1,5	2	6,8	8,1	6,8	3,5	3,4	3,5	3,06	3,4	2,6	2,7	2			1,3
2,2	3	9,6	8.7	9,6	5	4,8	5	4,42	4,8	3,8	3,9	2,8			1,9
3		12.6	11,5		8.6	6,3	6,5	5,77		5		3,8	3,5		2,5
	5	1		15,2					7.6		6,1				3
4		16.2	14,5		8,5	8,1	8,4	7,9		6,5		4,9	4,9		3,3
5,5	7.5	22	20	22	11,5	11	11	10,4	11	9	9	6,6	6,7		4,5
7,5	10	28.8	27	28	15.5	14,8	14	13,7	14	12	11	6,9	9		6
9		36	32		18,5	18,1	17	16,9		13,9		10,6	10,5		7
11	15	42	39	42	22	21	21	20,1	21	18,4	17	14	12,1	11	9
15	20	57	52	54	30	28.5	28	26.5	27	23	22	17,3	16,5	15	12
18,5	25	70	64	68	37	35	35	32,8	34	28,5	27	21,9	20,2	18,5	14,5
22	30	84	75	80	44	42	40	39	40	33	32	25,4	24,2	22	17

Références et Caractéristiques « RELAIS THERMIQUE »

Relais de protection thermique différentiels à associer à des fusibles

Relais de prot - compensés, - avec visualis - pour courant	à réarmen sation du d	ent manue éclencheme		itique,		
Zone	Fusible	à associe	,	Pour montage	Référence	Masse
de réglage		s choisi		sous		
du relais	Type aM	Ql	BS88	contacteur LC1, LP1		
A	A A	- X	A	LUI, EF I		ka
Classe 10 A (
		-		D00 D00	. Do 04004 (0)	0.165
0,100,16	0,25	2		D09D32	LR2-D1301 (2)	
0,160,25	0,5	2	.	D09D32	LR2-D1302 (2)	0,165
0,250,40	1	2	-	D09D32	LR2-D1303 (2)	0,165
0,400,63	11	2		D09D32	LR2-D1304 (2)	0,165
0,631	2	4		D09D32	LR2-D1305 (2)	0,165
11,6	2	4	6	D09D32	LR2-D1306 (2)	0.165
1,62,5	4	6	10	D09D32	LR2-D1307 (2)	0,165
2,54	6	10	16	D09D32	LR2-D1308 (2)	0,165
46	8	16	16	D09,D32	LR2-D1310 (2)	0,165
5,58	12	20	20	D09D32	LR2-D1312 (2)	0,165
710	12	20	20	D09D32	LR2-D1314 (2)	0,165
913	16	25	25	D12D32	LR2-D1316 (2)	0,165
	20	35	32	D18D32	LR2-D1321 (2)	0,165
1218						
1725	25	50	50_	D25 et D32	LR2-D1322 (2)	0,165
2332	40	63	63	D25 et D32	LR2-D2353 (2)	0,320
2836	40	80	80	D32	LR2-D2355 (2)	0,320
1725	25	50	50_	D40D95	LR2-D3322	0,510
2332	40	63	63	D40D95	LR2-D3353	0,510
3040	40	100	80	D40D95	LR2-D3355	0,510
3750	63	100	100	D50D95	LR2-D3357	0,510
4865	63	100	100	D50D95	LR2-D3359	0,510
5570	80	125_	125	D65D95	LR2-D3361	0,510
6380	80	125	125	D80 et D95	LR2-D3363	0,510

LR2-D3365

160

Détermination de la section de câbles en fonction du mode de pose

Abaque nº 1

Les tableaux ci-contre permettent de déterminer la section des conducteurs de phase d'un circuit. Ils ne sont utilisables que pour des canalisations non enterrées et protégées par disjoncteur.

Pour obtenir la section des conducteurs de phase, il faut :

- determiner une lettre de sélection qui depend du conducteur utilisé et de son mode de pose
- déterminer un coefficient K qui caracterise l'influence des différentes conditions d'installation.

Ce coefficient K s'obtient en multipliant les trois facteurs de correction, K1, K2

- le facteur de correction K1 prend en compte le mode de pose
- le facteur de correction K2 prend en compte l'influence mutuelle des circuits placés côte à côte
- le facteur de correction K3 prend en compte la température ambiante et la nature de l'isolant.

Lettre de sélection

type d'éléments conducteurs conducteurs et câbles multiconducteurs	mode de pose sous conduit, profilé ou goulotte, en apparent ou encastré sous vide de construction, faux platond sous caniveau, moutures, plinthes, chambrantes	lettre de sélection B
	en apparent contre mur ou platond sur chemin de câbles ou tablettes non perforées	С
cábles multiconducteurs	sur échelles, corbeaux, chemin de câbles perforé fixés en apparent, espacés de la paroi câbles suspendus	E
câbles monoconducteurs	sur échelles, corbeaux, chemin de câbles perforé fixés en apparent, espacés de la paroi câbles suspendus	F

Facteur de correction K1

lettre de sélection	cas d'installation	IK1
В	■ câbles dans des produits encastrés directement dans des matériaux thermiquement isolants	0,70
	conduits encastrés dans des matériaux thermiquement isolants	0,77
	m câbles multiconducteurs	0.90
	■ vides de construction et caniveaux	0.95
C	pose sous platond	0.95
B. C. E. F	= autres cas	17

Facteur de correction K2

	disposition des câbles jointifs	facteur de correction K2 nombre de circuits ou de câblee multiconducteurs 1 2 3 4 5 6 7 8 9 12 16 20 1,00 0,80 0,70 0,65 0,60 0,57 0,54 0,52 0,50 0,45 0,41 0,32											
B, C	encastrés ou noyés dans les parois	ì	1	1	ł	•	ı	ı	i	1 1			20 0,38
C	simple couche sur les murs ou les planchers ou tablettes non perforées			0,79				<u> </u>	-				
	simple couche au platond	0,95	0,81	0,72	0,68	0.66	0.64	0.63	0.62	0.61	0.61		
E, F	simple couche sur des tablettes horizontales perforées ou sur tablettes verticales	1,00	88,0	0,82	0,77	0,75	0,73	0,73	0,72	0,72	0,72		
	simple couche sur des échelles à câbles, corbeaux, etc.	1,00	0.87	0,82	0,80	0.80	0,79	0,79	0,78	0,78	0,78		

Lorsque les câbles sont disposés en plusieurs couches, appliquer en plus un facteur de correction de :

- 0,80 pour deux couches 0,73 pour trois couches 0,70 pour quatre ou cinq couches.

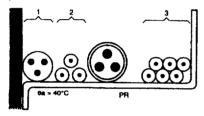
Facteur de correction K3

températures	isolation		•
amblantes (°C)	élestomère (caoutchouc)	polychiorure de vinyle (PVC)	polyéthylène réticulé (PR) butyle, éthylène, propylène (EPR)
10	1,29	1,22	1,15
10 15 20 25	1,22	1,17	1,12
20	1.15	1,12	1,08
25	1,07	1,07	1.04
30	1,00	1.00	1,00
35	0,93	0,93	0,96
40	0,82	0,87	0.91
45	0,71	0.79	0.87
35 40 45 50 55	0,58	0,71	0,82
55	-	0,61	0,76
60		0.50	0.71

Détermination de la section de câbles en fonction du mode de pose

Abaque n° 2

Détermination de la section minimale


Connaissant I'z et K (I'z est le courant équivalent au courant véhiculé par la canalisation: I'z = Iz/K), le tableau ci-contre indique la section à retenir.

Exemple

Un câble PR triphasé est tiré sur un chemin de câbles perforé, jointivement avec 3 autres circuits constitués :

- d'un câble triphasé (1ª circuit)
- de 3 câbles unipolaires (2º circuit)
- de 6 cables unipolaires (3º circuit): ce circuit est constitué de 2 conducteurs par phase.

Il y aura donc 5 groupements triphasés. La température ambiante est de 40 °C. Le câble PR véhicule 23 ampères par phase.

La lettre de sélection donnée par le tableau correspondant est E. Le facteur de correction K1, donné par le tableau correspondant, est 1. Le facteur de correction K2, donné par le tableau correspondant, est 0,75. Le facteur de correction K3, donné par le tableau correspondant, est 0,91. Le coefficient K, qui est K1 x K2 x K3, est donc 1 x 0,75 x 0,91 soit 0,68.

Détermination de la section On choisira une valeur normalisée de In

juste supérieure à 23 A. Le courant admissible dans la canalisation

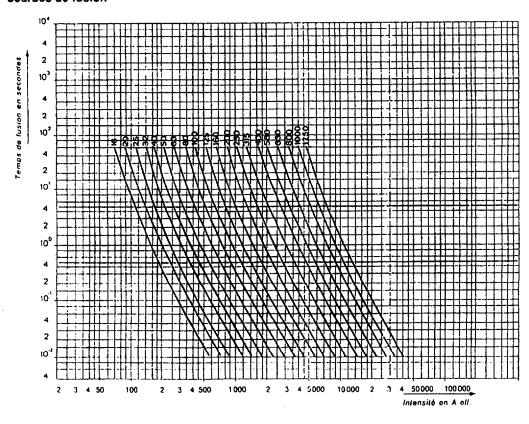
est lz = 25 A.

L'intensité fictive l'z prenant en compte le
coefficient K est l'z = 25/0,68 = 36,8 A.

En se plaçant sur la ligne correspondant à la
lettre de sélection E, dans la colonne PR3,
on choisit la valeur immédiatement
supérieure à 36,8 A, soit, ici, 42 A dans le
cas du cuivre qui correspond à une section
de 4 mm² cuivre ou, dans le cas de

l'aluminium 43 A, qui correspond à une section de 6 mm² aluminium.

		caoute ou PVC			butyle ou PR ou éthylène PR					
lettre de	В	PVC3	PVC2	1	PR3	1	PR2	1	1	1
sélection	C	1	PVC3	†	PVC2	PR3	1	PR2	+	+
	E	T	1	PVC3	1	PVC2	PR3	1	PR2	
	F	T		1	PVC3		PVC2	PR3	+	PR2
section	1.5	15,5	17,5	18,5	19,5	22	23	24	26	
cuivre	2,5	21	24	25	27	30	31	33	36	+
(mm²)	4	28	32	34	36	40	42	45	49	
	6	36	41	43	48	51	54	58	63	+
	10	50	57	60	63	70	75	80	86	
	16	68	76	80	85	94	100	107	115	
	25	89	96	101	112	119	127	138	149	161
	35	110	119	126	138	147	158	169	185	200
	50	134	144	153	168	179	192	207	225	242
	70	171	184	196	213	229	246	268	289	310
	95	207	223	238	258	278	298	328	352	377
	120	239	259	276	299	322	346	382	410	437
	150	T	299	319	344	371	395	441	473	504
	185		341	364	392	424	450	506	542	575
	240		403	430	461	500	538	599	641	679
	300		464	497	530	576	621	693	741	783
	400		1	T		656	754	825	1	940
	500			1	1	749	868	946	 	1 083
	630		1			855	1 005	1 088	 	1 254
section	2,5	16,5	18,5	19,5	21	23	25	26	28	1.20
aluminium	4	22	25	26	28	31	33	35	38	+
(mm²)	6	28	32	33	36	39	43	45	49	
	10	39	44	46	49	54	59	62	67	
	16	53	59	61	66	73	79	84	91	
	25	70	73	78	83	90	98	101	108	121
	35	86	90	96	103	112	122	126	135	150
	50	104	110	117	125	136	149	154	164	184
	70	133	140	150	160	174	192	198	211	237
	95	161	170	183	195	211	235	241	257	289
	120	186	197	212	226	245	273	280	300	337
	150		227	245	261	283	316	324	346	389
	185		259	280	298	323	363	371	397	447
	240	}	305	330	352	382	430	439	470	530
	300		351	381	406	440	497	508	543	613
	400					526	600	663	 	740
	500					610	694	770	—	856
	630			1		711	808	899	 	996


 $l'z = \frac{lz}{K1 \times K2 \times K3}$ avec lz calibre du dispositif de protection dont la valeur normalisée est immédiatement supérieure à la valeur du courant traversant le conducteur

Exemple : Un moteur de 7, 5 kW sous 400 V Imoteur = 14, 8 A (voir DT 6) La valeur de lz sera 16 A si la protection est assurée par des fusibles aM (calibre normalisé : voir DT 10)

Courbes de fusion de fusibles type aM

cartouches à couteaux type aM

Courbes de fusion

DT 10

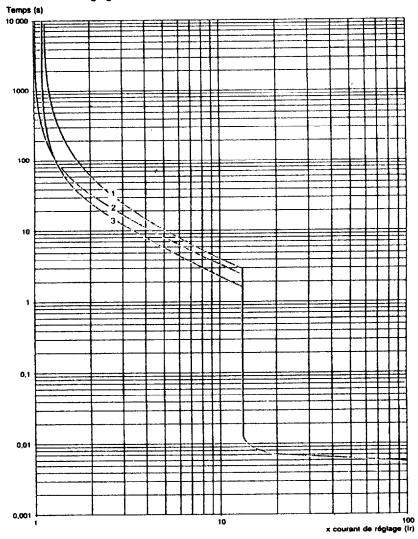
Références et caractéristiques de disjoncteurs-moteurs

Constituants de protection

Disjoncteurs magnétiques GV2-LE

Disjoncteurs-moteurs magnétiques types GV2-L et GV2-LE

Références



les m	oteurs t	ormalisé riphasé: atégorie	8	ulant	Calibre de la protection magnétique	Courant de déclen- chement id ± 20 %	Associer avec le relais thermique	Référence
30 V	415 V	440 V	500 V	690 V		10 1 20 70	moningee	
W	kW	kW	kW	kW	A	A		
-	0,08	0,06	-	-	0,4	5	LR2-K0302	☆ GV2-LEO
-	-	0.09	_		0,4	5	LR2-K0303	₩ GAS-FE
,06	0,09	0,12	_	-	0,4	5	LR2-K0304	∰ GV2-LE0
	0,12	_	_	0.37	0,63	8	LR2-K0304	☆ GV2-LEO
	0,18	0,18	-	-	0,63	8	LR2-K0305	∰ GV2-LEO
),09),12	-	0.25	_	0,55	1	13	LF12-K0305	☆ GV2-LEG
•	0.25 0,37	0,37	0,37	0,75	1	13	LR2-K0306	☆ GV2-LED
,18	0,37	0,37	0,37	0,75	1,6	22,5	LR2-K0306	☆ GV2-LEO
,25	0,55	0.55	0,55 0,75	1,1	1,6	22,5	LR2-K0307	∰ GV2-LEO
-	_	0,75	_	-	2,5	33,5	LR2-K0307	☆ GV2-LEO
,37	0,75	1,1	1,1	_	2,5	33,5	LR2-K0308	☆ GV2-LEO
,55 ,75	1,5	1,5	1,5	3	4	51	LR2-K0310	☆ GV2-LED
	_	_	2,2		4	51	LR2-K0312	∰ GV2-LE0
,1	2,2	2,2	3	4	6,3	78	LR2-K0312	∰ GV2-LE1
•	_	3	-	_	6,3	78	LR2-K0314	☆ GV2-LE1
,5	3	4	4	_	10	138	LR2-K0314	₩ GV2-LE1
	4	_	_	+	10	138	LR2-K0316	∰ GV2-LE1
2,2	4	4	5,5	7,5	10	138	LR2-D1314	\$ GV2-LE1
,2	5,5	5,5	7,5	9 11	14	170	LR2-D1316	☆ GV2-LE1
	7,5	7,5 9	7,5 9	11 15	18	223	LR2-D1321	☆ GV2-LE2
,5	9 11	11	11 15	18,5 22	25	327	LR2-D1322	☆ GV2-LE2

Courbes de déclenchement du GV2-L ou LE associé à un relais LR2-D13 ou LR2-K

Temps moyen de fonctionnement à 20 °C en fonction des multiples du courant de réglage

Pouvoir de coupure des « disjoncteurs-moteurs »

Disjoncteurs-moteurs magnétiques types GV2-L et GV2-LE

Références : pages 1/352 et 1/353 Encombrements : page 1/358 Schémas : page 1/361

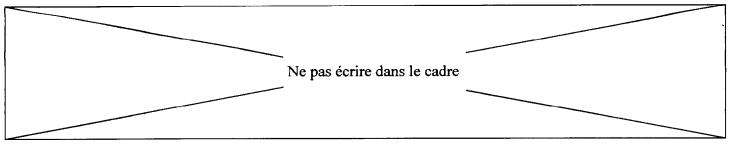
Caractéristiques

Type de disjoncteurs			-	CO3		L07	LOS	L10	L14	L16	L20	L22			LE07	LE08	LETO	LE14	LE16	LE20	LE2
			1	L05		<u> </u>	<u> </u>			L	ļ.,		LEOS					L		<u> </u>	
Calibre			^	0,4 à	1,6	2,5	4	6,3	10	14	18	25	0,4	1,6	2,5	•	6,3	10	14	18	25
Pouvoir de coupure seion IEC 947-2	230/ 240 V	leu	kA	*	*	*	*	*	*	*	*	50	*	*	*	*	*	*	*	*	50
		ics % (1)	<u> </u>	*	*	*	*	*	*	*	*	100	*	*	*	*	*	*	*	*	100
	400/ 415 V	lcu	kA	*	*	*	*	*	*	50	50	50	*	*	*	*	*	*	15	15	15
		C8 % (1)	<u> </u>	*	*	*	*	*	*	50	50	50	*	*	*	*	*	*	50	50	40
	440-V	lcu	kA	*	*	*	*	*	20	20	20	20	*	*	*	*	50	15	8	В	6
		lcs % (1)	<u> </u>	*	*	*	*	*	75	75	75	75	*	*	*	*	100	100	50	50	50
	500 V	lcu	RA	*	*	*	*	*	10	10	10	10	*	*	*	*	50	10	6	8	4
		ics % (1)	<u> </u>	*	*	*	*	*	100	75	75	75	*	*	*	*	100	100	75	75	75
	690 V	lcu .	KA	*	*	4	4	4	4	4	4	1	*	*	3	3	3	3	3	3	3
		ics % (1)	}	*	*	100	100	100	100	100	100	100	*	*	75	75	75	75	75	75	75
Fusibles éventuellem el loc > pouvoir de co seion IEC 947-2	upure lo 230/			*	*	*		*	*	*	*	100	*	*	*	*	*	*		*	80
amendement 1	240 V	gl	Δ_	*	*	*	*	*	*	*	*	125	*	*	*	*	*	*	*	*	100
	400/	aM	A_	*	*	*	*	*	*	80	100	100	*	*	*	*	*	*	63	63	80
	415 V	gi .		*	*	*	*	*	*	100	125	125	*	*	*	*	*	*	80	80	100
	440 V	<u>eM</u>	^	*	*	*	*	*	50	63	80	80	*	*	*	*	50	50	50	50	63
	500 V	aM	A	*	*	*	*	*	63	80	100	100	*	*	*	*		63	63	63	80
	500 V	gi .	^	*	*	*	*	*	50 63	50 63	50 63	50 63	*	*	* *	*	50 63	50 63	50 63	50 63	50 63
	690 V	aM	A	*	*	20	25	40	40	50	50	50	*	*	16	25		32	40	40	40
		Ql	A	*	*	25	32	50	50	63	63	63	*		20	32	40	40	50	50	50
Protection des câbles les contraintes thermic cas de court-circuit (culvre isolés en PVC)	iques en																				
Sections minimales protégées à 40 °C	1 mm²		kA.	•	•	•	•	≤ 10	≤6	(2)	(2)	(2)	•	•	•	•	≤ 10	≤ 6	(2)	(2)	(2)
et à loc maxi	1,5 mm	-	kA.	•	•	•	•	≤ 20	≤ 10	(2)	(2)	(2)	•	•	•	•	≤ 20	s 10	(2)	(2)	(2)
	2,56	mm²	* >	100 KA	•	•	•	•	•	•	•	•		•	•	• 1	•	•	•	•	•

(1) En % de lou (2) Section non protégés

Académie :	Session:				
Examen ou Concours:	Série : Repère de l'épreuve :				
Spécialité / option :					
Epreuve / sous-épreuve :					
NOM:					
(en majuscules, suivi s'il y a lieu, du nom d'épouse)					
Prénoms:	N° du candidat				
 Né(e) le :	(le numéro est celui qui fig	gure sur la convocation ou sur la liste d'appel)			
Sous épreuve U 42 :					

Vérification des performances mécaniques et électriques d'un système pluri-technologique


DOSSIER REPONSE

LIGNE D'ASSEMBLAGE DE SEAUX

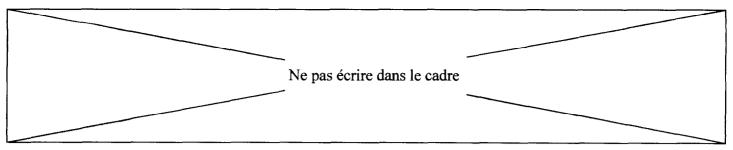
Ce dossier comprend les documents DR 1 à DR 16

Il est constitué de trois parties indépendantes :

- A. Vérifier les performances du poste de coudage
- B. Vérification des performances du groupe hydraulique
- C. Vérification de la section du câble

PROBLEMATIQUE

A la demande de certains clients, l'entreprise JOKEY FRANCE désire étendre sa gamme de fabrication, notamment dans la fabrication de seaux ayant une plus grande résistance mécanique (seaux pouvant contenir des produits plus lourds : peinture, mastic, enduit, etc ...)


Les anses devront donc être adaptées au poids, les diamètres de tiges seront augmentés. (nouveau diamètre de tige = 5 mm)

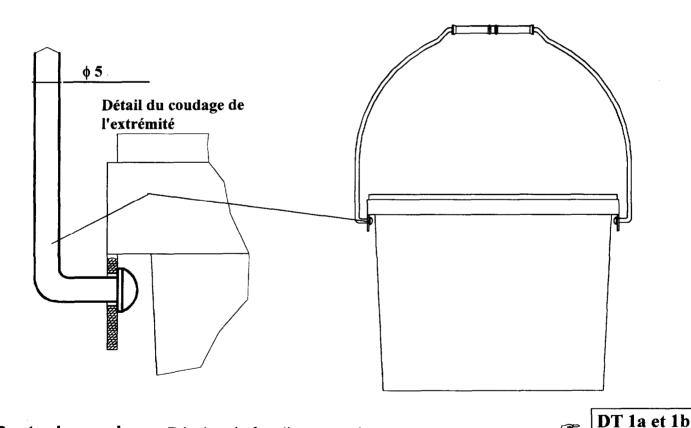
Les presses à injecter seront dotées de nouveaux moules, les seaux ayant une épaisseur de plastique plus grande.

La machine en aval : l'Empileuse-Anseuse devra être adaptée aux nouvelles gammes de fabrication et subir le minimum de modifications.

On vous demande de vérifier certaines performances de la machine au niveau :

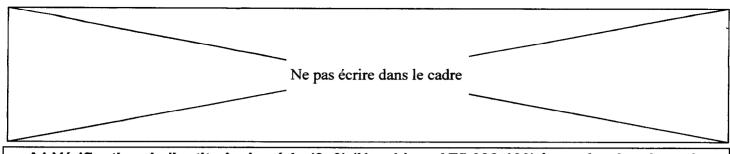
- ⇒ des vérins de mise en forme de l'anse, notamment lors du coudage (Parties A)
- ⇒ du groupe hydraulique qui fournit l'énergie hydraulique aux vérins de serrage et de boutrollage (Partie B)
- ⇒ de l'appareillage électrique du moteur de pompe (Partie C)

AVANT PROPOS

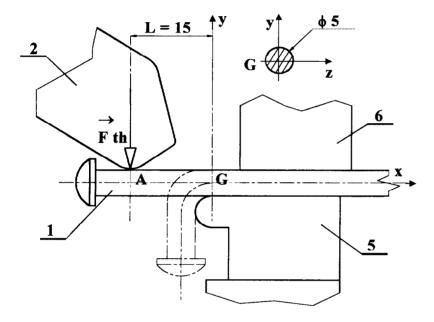

La machine à anser est normalement utilisée pour des anses de diamètre 3,8 maximum. L'augmentation de la densité des produits conditionnés par un des clients de Jokey nécessite la pose d'anses de diamètre 5 mm sur les seaux.

On se propose de vérifier que la machine pourra s'adapter à cette augmentation de diamètre.

Cette vérification se fera à chaque stade de l'élaboration et de la pose de l'anse.


L'étude proposée se limitera à la vérification du poste de coudage (pliage) de l'extrémité de l'anse

A) PROBLEME A RESOUDRE : Vérifier les performances du poste de coudage


Poste de coudage : Principe de fonctionnement

La tige, dont l'extrémité a été bouterollée au poste précédent, arrive au poste de coudage. Elle est bridée sur le bâti par l'intermédiaire du vérin 6. Le doigt de coudage 2, est fixé sur le chariot 3 qui est guidé en rotation dans le guide 5 par l'intermédiaire de 4 galets 4. Le vérin (8 + 9) est articulé sur le chariot 3 et sur le bâti 11. La rentrée de la tige du vérin provoque la rotation du chariot 3 et permet d'obtenir le coudage de l'extrémité de l'anse.

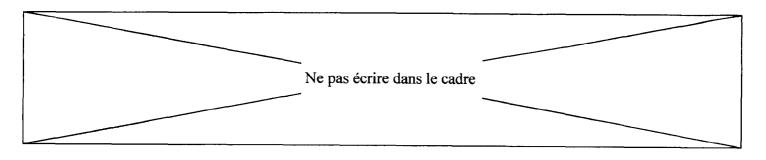
A1 Vérification de l'aptitude du vérin (8+9) (Hoerbiger AZ5 032-100) à couder des tiges de diamètre 5 mm

A1.1 Calcul de l'effort théorique Fth nécessaire au coudage de la tige. On ne tient pas compte des frottements au point A.

On suppose que l'effort s'exerce à une distance L de la section G de la tige à couder.

Rm : résistance minimum du matériau composant la tige.

IGz / v = π **d** ³ / 32 (module de flexion de la tige cylindrique par rapport à l'axe Gz)

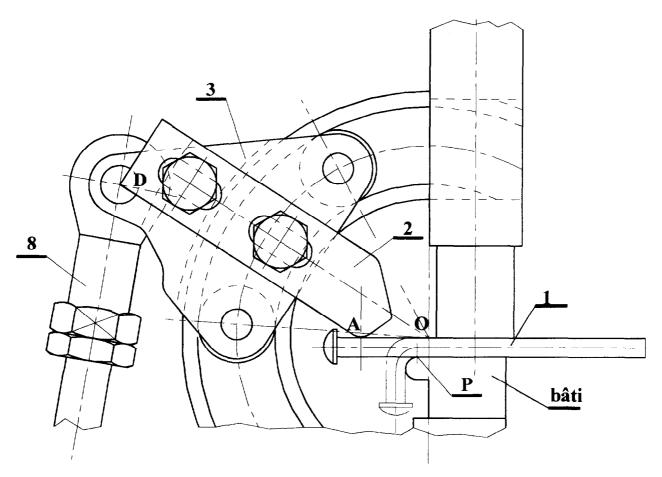

k coefficient dépendant du rapport L / d

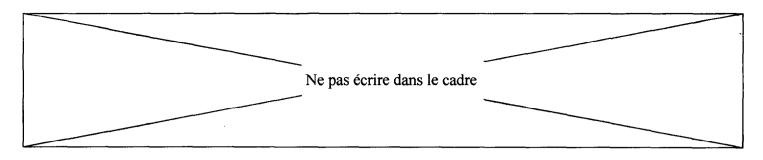
L'effort **Fth** est obtenu par la relation expérimentale suivante :

Fth = k.(IGz / v).(Rm / L)

Sachant que Rm = 490 Mpa (N/mm²) et k = 2,1, calculer Fth

Cadre réponse	
	Est. — Al
	Fth = N


A1.2 Détermination de l'action réelle A2/1 nécessaire au coudage sachant que le frottement entre 2 et 1 n'est pas négligeable.

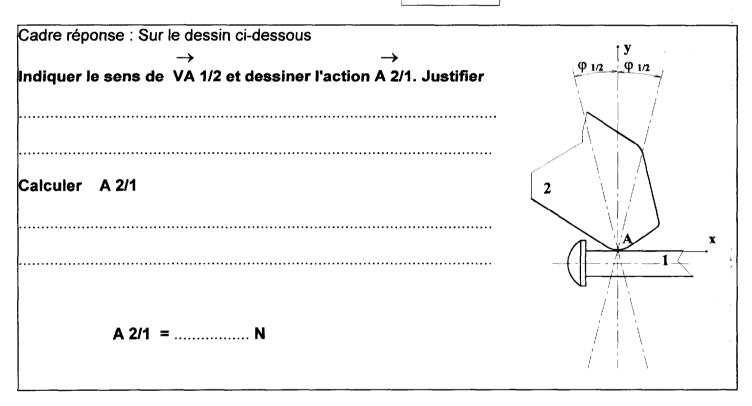

<u>Hypothèses</u>: $Tg \varphi_{2/1} = f_{2/1} = 0,25$. Les autres liaisons seront supposées parfaites.

A1.2.1 Détermination qualitative (direction et sens) de la vitesse de glissement VA 1/2 afin de pouvoir situer l'action $\overline{A2/1}$ sur le cône de frottement.

<u>Hypothèses</u> : La tige de vérin rentre afin de couder la tige 1. Lors du coudage, **la partie libre de la tige 1 pivote autour du point P.**

Cadre réponse :
Donner la nature des mouvements de :
2/bâti :
1/2:
1/bâti :
Ecrire la loi de composition des vitesses au point A :
Tracer, sur le dessin ci-dessous, la c <u>omp</u> osition des vitesses au point A. Définir la direction et le sens de la vitesse de glissement VA 1/2 .

A1.2.2 Détermination de l'action A 2/1

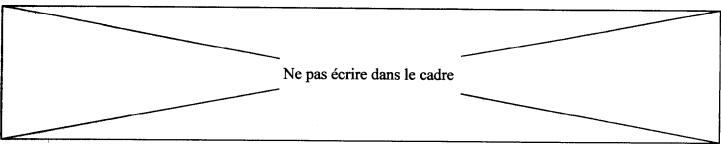

Hypothèses:

Le frottement entre 2 et 1 au point A est tel que $Tg\phi_{2/1} = f_{2/1} = 0.25$ ($\phi_{2/1} = 14^{\circ}$)

On supposera que Fth = 850 N

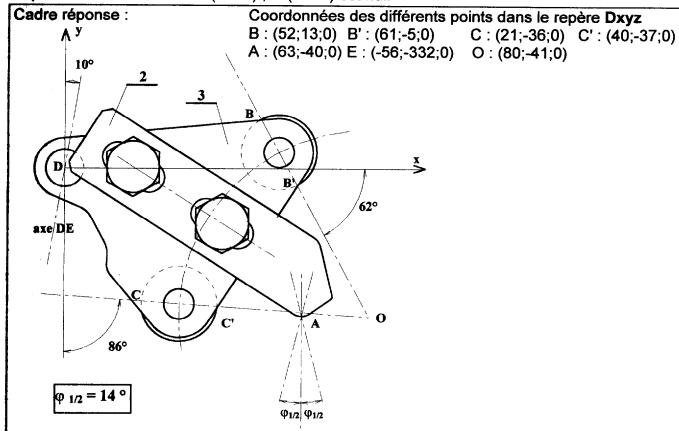
La relation entre A 2/1 et Fth est : A2/1= (2 L.Fth) / (2 L cos $\varphi_{2/1}$ - d sin $\varphi_{2/1}$)

L, d, et Fth sont définis au paragraphe A1.1 voir DR 3



A1.2.3 Détermination de l'effort exercé par le vérin 8+9 sur le guide 3 : D 8/3

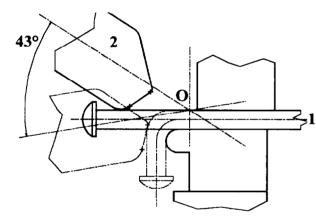
<u>Hypothèses</u> : Quel que soit le résultat trouvé précédemment :


On supposera que dans le repère Dxyz, A $1/2 = (+/-220) \times + 890 y$. Le signe de la composante suivant l'axe Dx dépend du résultat de la question précédente.

A l'exception du contact entre les pièces 1 et 2, toutes les liaisons seront supposées parfaites, on négligera le poids propre des pièces. Les résultantes des actions de contact du guide 5 sur les galets 4 sont supposées concentrées en B ou B' et C ou C'.

On isole l'ensemble (2 + 3 + galets) voir dessin ci-dessous

Déterminer graphiquement ou analytiquement D 8/3 : On remarquera que le moment par rapport au point O des actions en B (ou B'), C (ou C') est nul.

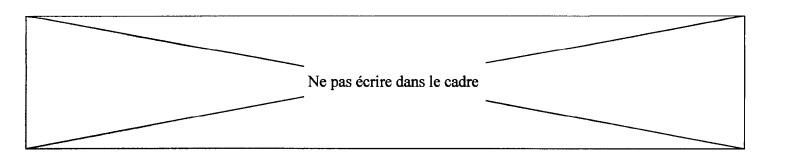

D 8/3 =N

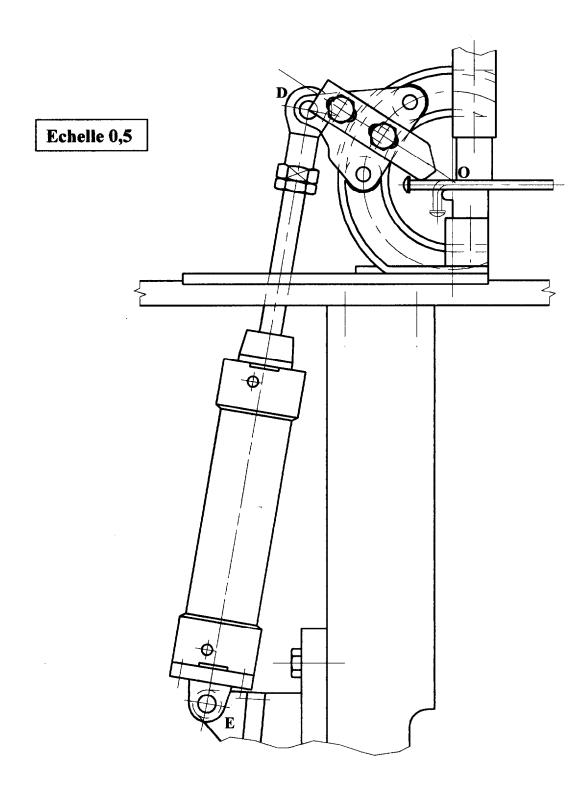
	, <u>.</u>	
Ne pas écrire dans le cadre		
1.3 Le vérin Hoerbiger AZ5 032-100 peut-il exercer cet effort ?	G	voir DT 3

<u>Hypothèses</u>: pression d'alimentation du réseau en air comprimé : **6 bars** (1 bar = 10⁵ Pa)

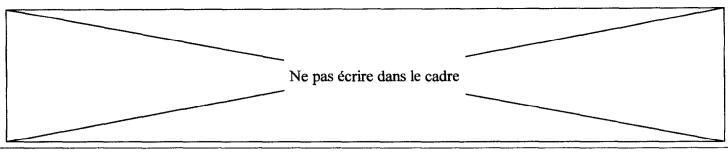
	•	•	,	
Cadre réponse : Justifier votre réponse :				
·				

A1.4 Vérification que la course du vérin autorise toujours le coudage à 90° de l'extrémité




Hypothèses:

Afin de couder l'extrémité de l'anse à 90°, il est nécessaire que le doigt à couder 2, pivote d'un angle de 43° environ autour du point O. En fin de coudage la tige du vérin Hoerbiger AZ5 32-100 est complètement rentrée (butée fin de course).


A1.4.1 Sur le document réponse DR 8, tracer les positions extrêmes D' et D" du point D correspondant aux positions tige rentrée et tige sortie du vérin. Justifier vos constructions dans le cadre ci-dessous.

Cadre réponse	

Ne pas écrire dans le cadre	
A1.4.2 Mesurer la course utile du vérin. Comment pourrait-on réduire la course d'approche ?	G DT 2
Cadre réponse :	
Course utile : Course d'approche :	
Conclusion :	
A1.4.3 Comment peut-on ajuster la valeur de l'angle de coudage à 90° ?	ℱ DT 1a, 1b
Cadre réponse :	

B) PROBLEME A RESOUDRE : Vérification des performances du groupe hydraulique

Le groupe hydraulique a actuellement ces caractéristiques :

- Puissance du moteur : 4 kW ; courant de ligne sous 400 V : 8, 1 A

- Vitesse du moteur # 1470 tr / mn

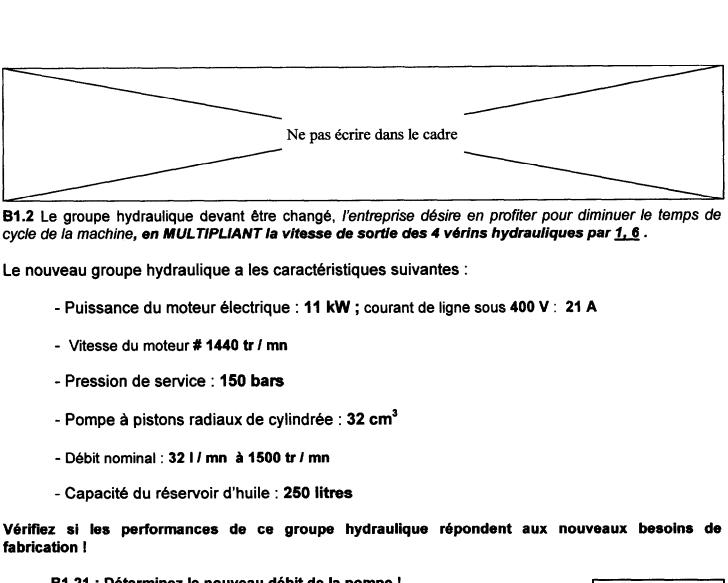
- Pression de service : 150 bars

- Pompe à pistons radiaux de cylindrée : 16 cm³

- Débit nominal : 13 I / mn à 1500 tr / mn

- Réservoir d'huile : 100 litres

Remarque Importante:

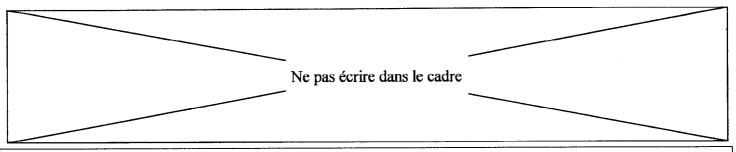

les 4 vérins (de serrage et de boutrollage) sortent et rentrent simultanément !

Ces caractéristiques assurent une vitesse de sortie ${\bf V}$ des vérins hydrauliques de boutrollage et de serrage de ${\bf 1,7~cm/s}$

Afin de garantir un bon boutrollage, les 2 vérins de boutrollage de diamètre 63 mm et de course 100 mm sont remplacés par 2 vérins de diamètre 80 mm et de course 100 mm. Les 2 vérins de serrage restent inchangés : diamètre 63 mm et course de 100 mm.

B1.1 A partir des caractéristiques du groupe hydraulique et de la vitesse de sortie des vérins, vérifiez que les performances du groupe, plus particulièrement au niveau du débit, ne conviennent plus lorsque les 2 vérins de boutrollage passent à un diamètre de 80 mm!

	F	Voir DT 4 et 5
cadre réponse		
	. <u> </u>	



B1.21 : Déterminez le nouveau débit de la pompe ! Voir DT 5

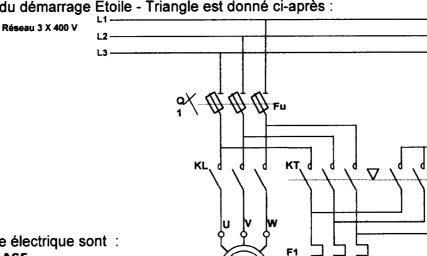
B1.22 : Déterminez la puissance uti	ile du moteur ! (par calcul et par al	paque)
	P	Voir DT 4 et 5
cadre réponse		

cadre réponse

No non écrir	e dans le cadre	
Ne pas ecrit	e dans le caure	
		_
B1.23 : Déterminez la cylindrée théorique et	à nartir des abaques la cylir	ndrée normalisée ains
que la capacité du réservoir d'huile en prenant la va		
The same of process and the same of process and the same of the sa	₽	Voir DT 5
cadre réponse		
		,
B1.24 : Donnez vos conclusions sur le nouve	au groupe hydrauligue chois	i par l'entreprise !
	aa geeape, a.aaqae ee.e	. pa. 7 3 3p. 100 1
cadre réponse		

C) PROBLEME A RESOUDRE: Vérification de l'appareillage électrique et de la distribution

Le choix du nouveau groupe hydraulique, notamment du moteur d'entraînement de la pompe, entraîne obligatoirement un changement de l'appareillage électrique : Sectionneur, Fusibles, Contacteurs et Relais Thermique et de la distribution électrique.

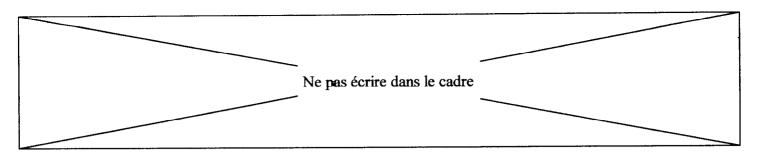

C1 Vérification des performances de l'appareillage électrique du moteur

Le réseau électrique de l'entreprise est un réseau triphasé 230 / 400 V, neutre et terre distribués et le moteur a une puissance utile de 11 kW démarrant en Etoile - Triangle.

C1.1 Quelle indication la plaque signalétique doit-elle indiquer pour que ce moteur puisse démarrer en Ftoile-Triangle?

	Voir D1 6
cadre réponse	

C1.2 Le schéma de puissance du démarrage Etoile - Triangle est donné ci-après :


Les références de l'appareillage électrique sont :

- Sectionneur Q1: LS1-D2531A65

- Fusibles aM Fu: DF2-CA25 10 * 38

- Contacteurs de ligne KL et Triangle KT : LC1-D1210 B5
- Contacteur Etoile KE: LC1-D0910 B5
- Relais thermique LR2-d1316

Ne pas écrire dans le cadr	re	
		_
Calculez les courants traversant les enroulements du moteur Triangle, et justifiez le choix de l'appareillage électrique en pré		
lu relais thermique iTH !	F	Voir DT 6 et 7
Remarque :		
Comme le choix d'un contacteur ne se fait pas au dix errondir à la valeur entière immédiatement en dessous !	ième d'ampère p	rès, vous pourrez
adre réponse		
·		
C1.3 Quelle est la signification « B5 » au niveau de la référence	des contacteurs !	
	7	Voir DT 6
adre réponse	· · · · · · · · · · · · · · · · · · ·	
·		

C2 Vérification de la section de câble

Le câble multi-conducteurs alimentant la machine avant modification avait une section de 1, 5 mm² et les âmes en Cuivre et le nouveau moteur de pompe a une puissance utile de 11 kW.

Données techniques du câble et de son environnement :

- La longueur L = 15 m
- La température ambiante = 40 °C (voisinage des presses à injecter)
- La pose du câble peut-être assimilée à une pose sur tablettes non perforées
- Pas d'autres câbles au voisinage
- Isolant : PR (ou PRC)

C2.1 Déterminez la valeur du courant corrigée l'z et Vérifiez si la section des âmes conductrices pour alimenter ce moteur convient encore ! Sinon, quelle section pourrait convenir ?

Les fusibles sont des aM 25 A

Les fusibles sont des am 25 A	F	Voir DT 8 et 9
cadre réponse		

C2.2 Le câble a désormais une section de S = 2, 5 mm². La protection de l'installation alimentant le groupe hydraulique est assurée par des fusibles aM 25A.

Un court-circuit **franc biphasé** se produit au niveau de la plaque à bornes du moteur, calculez la valeur du courant de court-circuit présumé puis vérifiez la contrainte thermique du câble $t \le K^2 * S^2 / Icc^2$!

où K est un coefficient constructeur, S : la section des âmes conductrices en mm² et lcc : le courant de courtcircuit en A

REMARQUE: Le temps de coupure t du dispositif de protection doit être inférieur au temps de passage du courant de court-circuit, tel que la température des conducteurs soit portée à la valeur limite maximale admise. Il faut donc vérifier si $t \le K^2 * S^2 / lcc^2$

Données : K pour âmes en cuivre et isolant PR (ou PRC) K = 135 Formule approchée du courant de court-circuit présumé : Icc = 0, 8 * U / [ρ * L / S] où L représente la longueur totale des âmes conductrices traversées par le courant de court-circuit et ρ la résistivité du cuivre ρ = 22, 5 10⁻³ Ω * mm² / m

DR 15/16

l Namos ácmino dons la sada	_	
Ne pas écrire dans le cadr	e	
cadre réponse		
C2.3 L'entreprise décide de remplacer les fusibles par un disjor	ncteur moteur (de type GV2 – LE22!
L'ondoprido doside de l'empideer les lasibles par all alejer	notedi inotedi (de type over the t
C2.31 Justifiez ce choix et précisez la valeur du co	urant qui occ	asionnera l'ouverture
du disjoncteur!	diant qui occ	
aa alojonotoai .	©	Voir DT 11 ou 13
codro rónanco		
cadre réponse		
	.Uation on ac	
C2.32 Ce disjoncteur protège-t-il correctement l'insta		plaçant dans le même
C2.32 Ce disjoncteur protège-t-il correctement l'insta cas de court-circuit biphasé du C2.2 ! Justifiez votre répons		plaçant dans le même
cas de court-circuit biphasé du C2.2 ! Justifiez votre répons	se!	plaçant dans le même Voir DT 12 et 13
cas de court-circuit biphasé du C2.2 ! Justifiez votre répons	se!	
cas de court-circuit biphasé du C2.2 ! Justifiez votre répons	se!	
cas de court-circuit biphasé du C2.2 ! Justifiez votre répons	se!	
cas de court-circuit biphasé du C2.2 ! Justifiez votre répons	se!	
	se!	
cas de court-circuit biphasé du C2.2 ! Justifiez votre répons cadre réponse	se!	Voir DT 12 et 13
cas de court-circuit biphasé du C2.2 ! Justifiez votre répons	se!	Voir DT 12 et 13
cas de court-circuit biphasé du C2.2 ! Justifiez votre répons cadre réponse	se!	Voir DT 12 et 13
cas de court-circuit biphasé du C2.2 ! Justifiez votre répons cadre réponse C2.33 Donnez 2 avantages d'utiliser un disjoncteur à	se!	Voir DT 12 et 13
cas de court-circuit biphasé du C2.2 ! Justifiez votre répons cadre réponse C2.33 Donnez 2 avantages d'utiliser un disjoncteur à	se!	Voir DT 12 et 13
cas de court-circuit biphasé du C2.2 ! Justifiez votre répons cadre réponse C2.33 Donnez 2 avantages d'utiliser un disjoncteur à	se!	Voir DT 12 et 13
cas de court-circuit biphasé du C2.2 ! Justifiez votre répons cadre réponse	se!	Voir DT 12 et 13
cas de court-circuit biphasé du C2.2 ! Justifiez votre répons cadre réponse C2.33 Donnez 2 avantages d'utiliser un disjoncteur à	se!	Voir DT 12 et 13
cas de court-circuit biphasé du C2.2 ! Justifiez votre répons cadre réponse C2.33 Donnez 2 avantages d'utiliser un disjoncteur à	se!	Voir DT 12 et 13

Brevet de Technicien Supérieur ASSITANCE TECHNIQUE D'INGENIEUR SESSION 2002

U 41

EPREUVE E.4: ETUDE D'UN SYSTEME PLURITECHNOLOGIQUE

Sous-épreuve : Etude des spécifications générales d'un système pluritecthnologique

Durée : 3 heures Coefficient : 3

Aucun document n'est autorisé

Matériel autorisé:

Calculatrices de poche, y compris, les calculatrices programmables, alphanumériques, ou à écran graphique, à condition que leur fonctionnement soit autonome, et qu'il ne soit pas fait usage d'imprimante.

Documents remis en début d'épreuve :

Dossier Système (vert)
 DS 1 à DS 5

Dossier Technique (jaune)
DT 1 à DT 8

Dossier Réponse (blanc)
DR 1 à DR 10

Documents à rendre obligatoirement en fin d'épreuve :

Dossier Réponse complété

Recommandations:

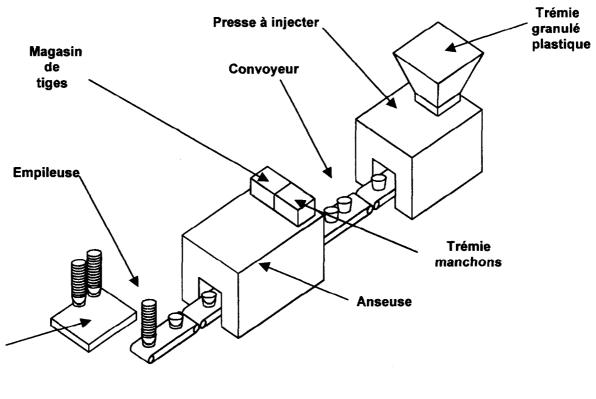
- DII est indispensable de commencer par lire le **Dossier Système**
- ▷ Pour chaque question du Dossier Réponse :
- Il est impératif de se reporter préalablement aux pages indiquées du Dossier Technique.
- Les candidats formuleront les hypothèses qu'ils jugeront nécessaires.

Sous épreuve U 41 : Etude des spécifications générales d'un système pluri-technologique

DOSSIER SYSTEME

LIGNE D' ASSEMBLAGE DE SEAUX

Ce dossier comprend les documents DS1 à DS5


NB : Ce dossier est à lire avant de commencer l'épreuve.

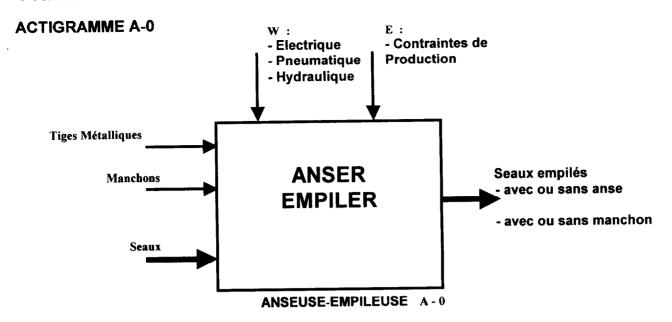
PRESENTATION GENERALE

La socièté JOKEY FRANCE est spécialisée dans la fabrication de seaux en matière plastique, de différentes formes et de différentes tailles (de formes rondes, carrées ou rectangulaires; de différentes couleurs avec ou sans couvercle; avec ou sans anse ; avec ou sans manchon plastique) selon la demande du client.

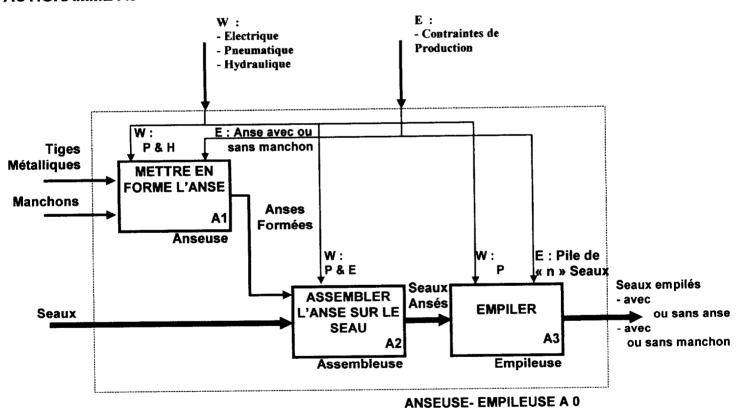
Les seaux sont fabriqués à partir de presses à injecter. A la sortie, une machine appelée 'Anseuse Empileuse' assure la pose d'une anse si nécessaire, puis empile les seaux.

DESSIN SYNOPTIQUE DE L'ENSEMBLE DE FABRICATION DE SEAUX

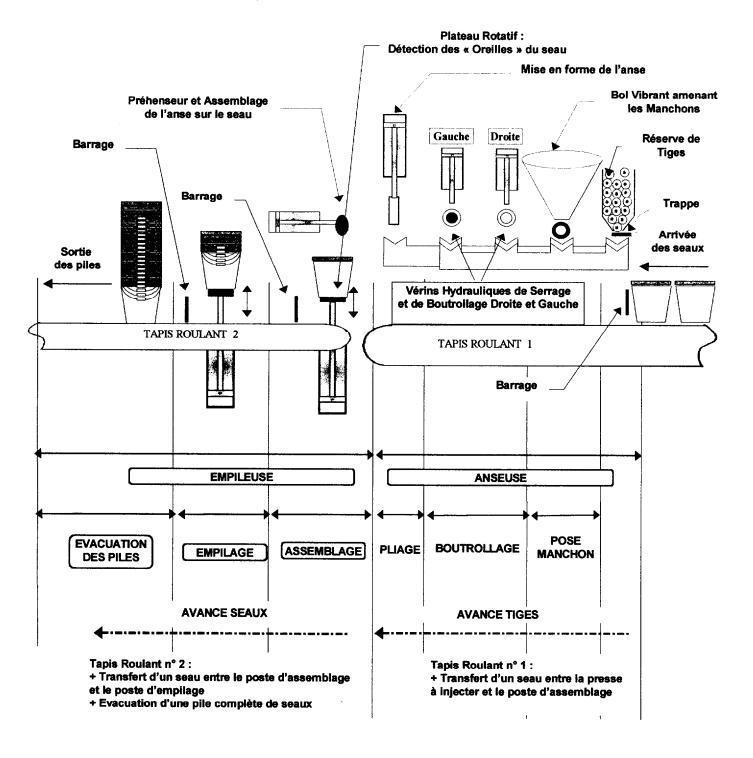
stockage


Paiette de

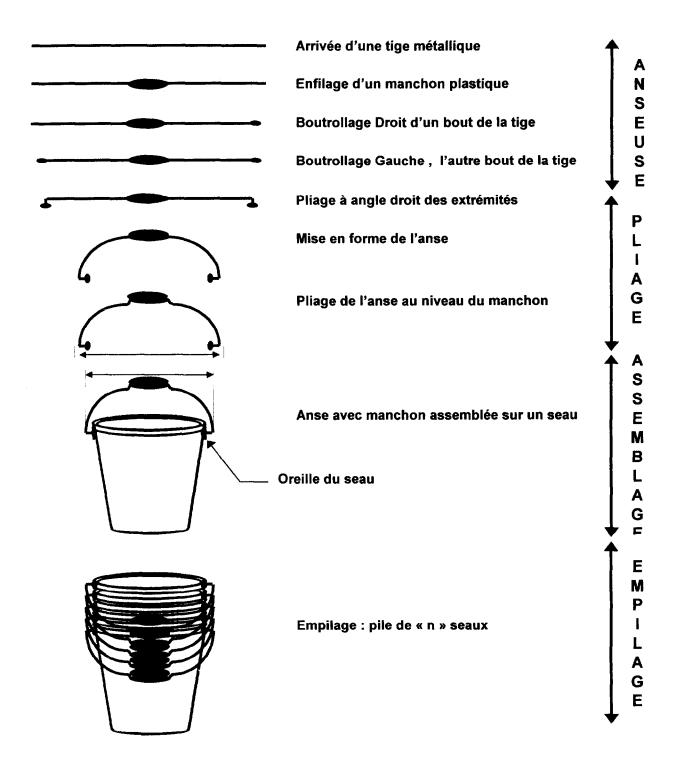
Notre étude portera sur l'Anseuse Empileuse, installée sur un ensemble mobile, permettant des changements de fabrication plus faciles.


Elle dispose également d'un magasin de tiges et d'une trémie contenant des manchons plastiques (ou poignées).

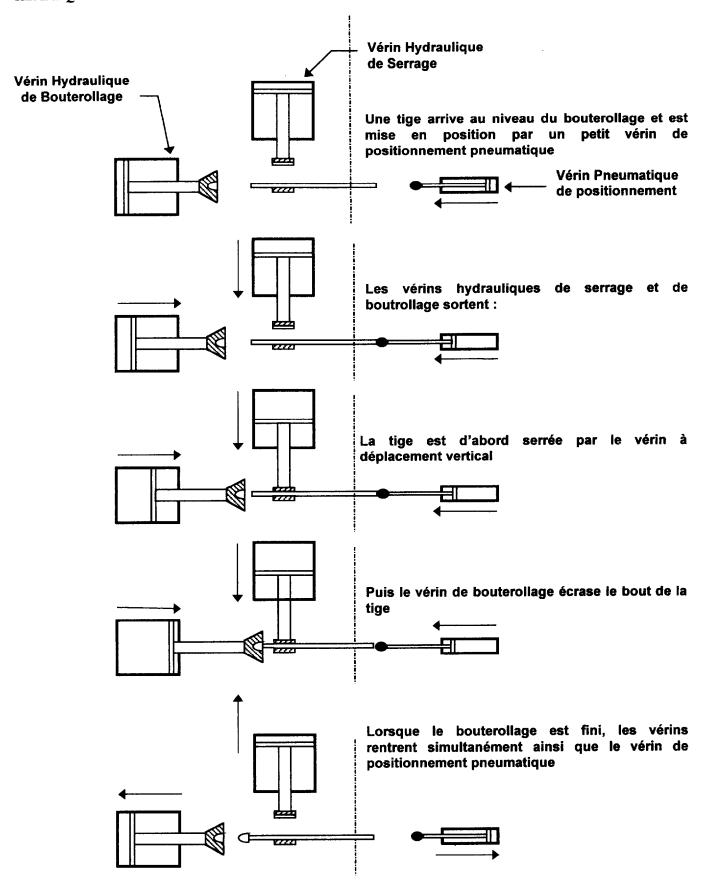
Les piles de seaux sont évacuées par un opérateur manuellement à la sortie de l'empileuse sur une palette de stockage. L'opérateur, avant le transfert enfile une housse de protection.


PRESENTATION FONCTIONNELLE

ACTIGRAMME A0



DESSIN SYNOPTIQUE DE LA MACHINE : ANSEUSE -EMPILEUSE


Remarque : les échelles ne sont pas respectées !

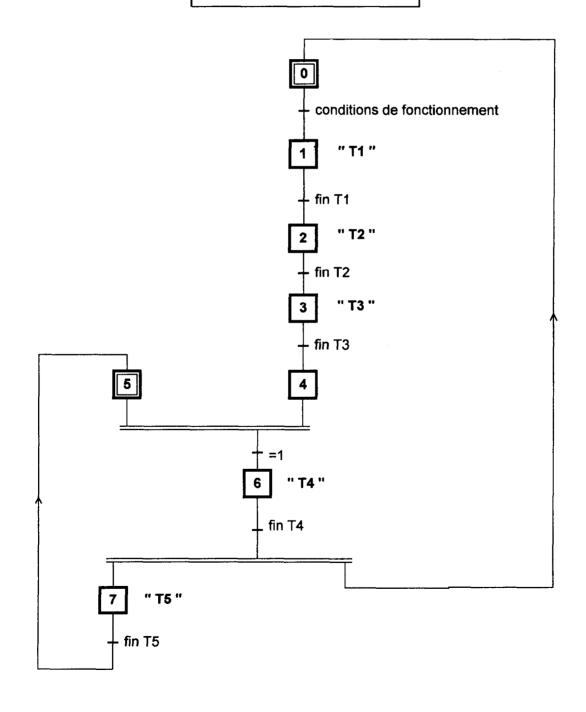
PRINCIPE DE FABRICATION D'UNE PILE DE SEAUX ANSES AVEC MANCHON

PRINCIPE DU BOUTROLLAGE

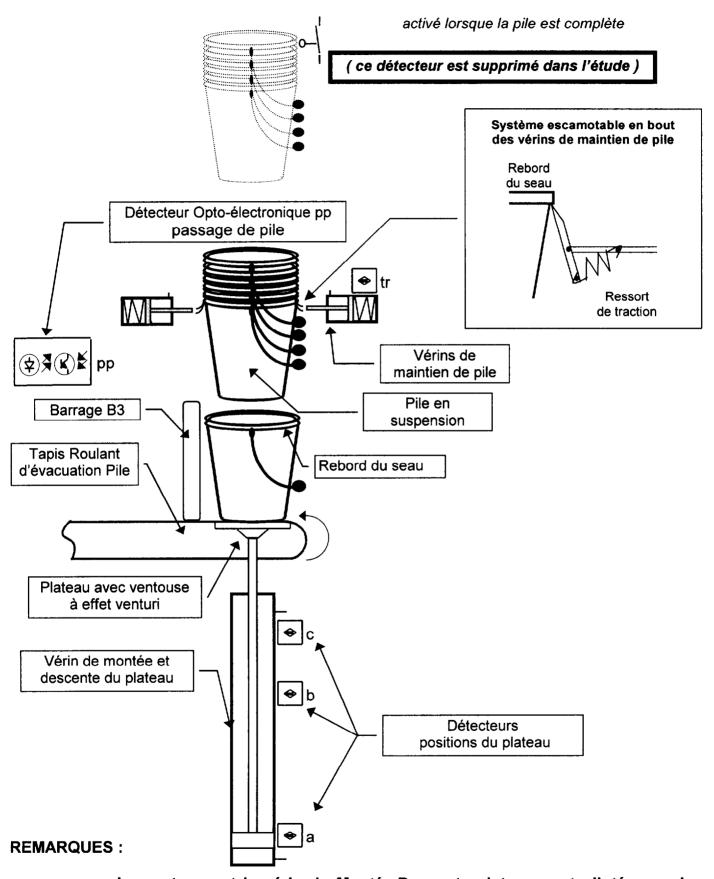
REMARQUE : SEUL LE BOUTROLLAGE GAUCHE DE LA TIGE EST REPRESENTE

Sous épreuve U 41 : Vérifications des performances mécaniques et électriques d'un système pluri-technologique

DOSSIER TECHNIQUE


LIGNE D' ASSEMBLAGE DE SEAUX

Ce dossier comprend les documents DT 1 à DT 8


Tableau d'analyse de la coordination des tâches.

Repère tâche	Le début de la tâche est autorisé si	La fin de la tâche autorise
T1	fin de T4	Т2
T2	fin de T1	Т3
ТЗ	fin de T2	T4
T4	fin de T3 ET fin de T5	T1 ET T5
Т5	fin de T4	T4

Grafcet de coordination des tâches

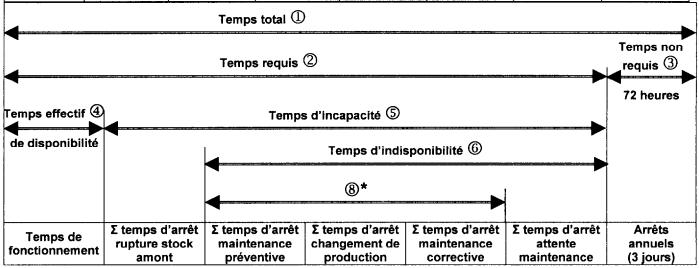
Présentation de la partie Opérative réalisant la tâche « EMPILER » <u>Détecteur cp</u>:

- La ventouse et le vérin de Montée-Descente plateau sont pilotés par des distributeurs Bistables !
- Le vérin ouvrant le Barrage B3 et les vérins de Maintien de pile sont pilotés par des distributeurs Monostables !

Description de la tâche « EMPILER »

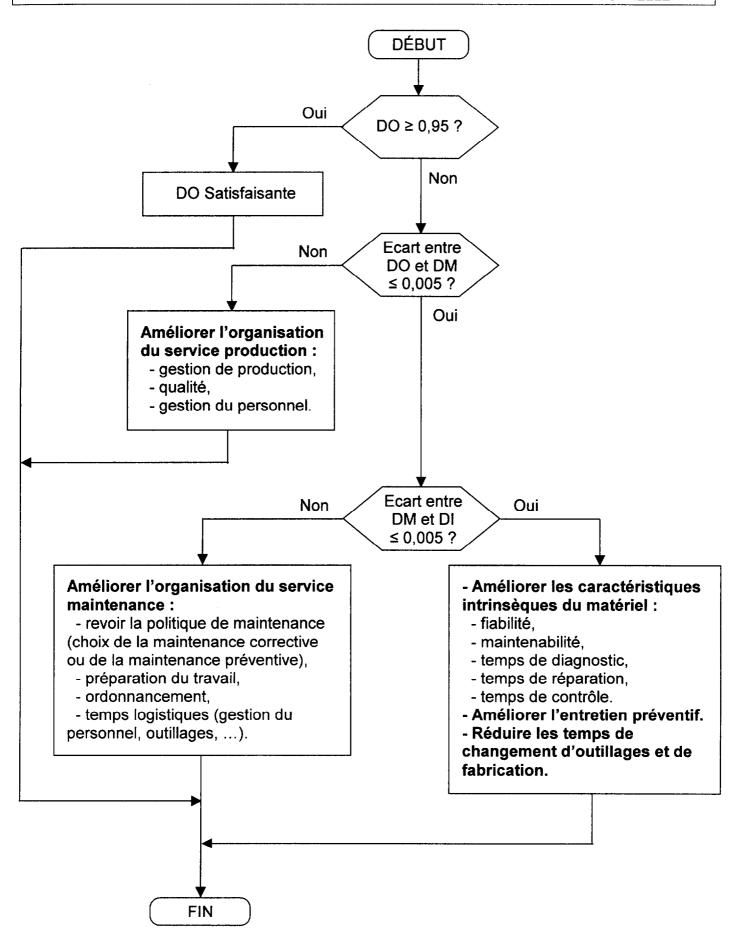
Si la tâche « EMPILER » est appelée par le GRAFCET de coordination des tâches et qu'un seau est présent au niveau du poste d'empilage :

- 1 / Le seau est maintenu en place sur le plateau grâce à la ventouse
- 2 / Après une seconde, levée du plateau jusqu'au détecteur intermédiaire, les systèmes en bout de vérins de maintien de pile s'escamotent sous l'effet de la poussée des seaux
- 3 / Tant que la pile est incomplète ou que le nombre total de seaux à empiler n'est pas atteint et que la tâche « EMPILER » est appelée


le cycle se poursuit de la manière suivante :

- 4 / Arrêt de la ventouse et descente du plateau en position basse : la pile reste en suspension grâce aux vérins de maintien
- **5** / Lorsque le nombre « X » de seaux constituant une pile est atteint ou que le nombre total « Z » de seaux à empiler est atteint, la levée du plateau se fait jusqu'au détecteur « position haute »
 - 6 / Maintien de l'action de la ventouse et recul des vérins de maintien
 - 7 / Descente du plateau en position basse pour déposer la pile sur le tapis d'évacuation
 - 8 / Arrêt de la ventouse, ouverture du barrage B3 et retour en position des vérins de maintien
 - 9 / Rotation du tapis d'évacuation
 - 10 / Lorsque la pile est passée de l'autre côté du barrage B3, il y a fermeture de celui-ci
 - 11 / Le système est prêt pour le conditionnement d'une nouvelle pile.

TABLEAU DE	REPERAGE DES I	NFORMATIONS ET DES ACTIO	NS
	POINT DE	Vue P. O.	
INFORMATIONS	DESIGNATION	Actions	DESIGNATION
Plateau position basse	а	Aspiration de la Ventouse	v
Plateau position intermédiaire	b	Levée du plateau	LV
Plateau position haute	С	Descente plateau	DES
Vérins de maintien en position reculée	tr	Recul des vérins de maintien de pile	RM
Barrage B3 ouvert	bo	Ouverture Barrage B3	OVE
Pile passée	рр	Rotation Tapis Roulant d'évacuation	RT
Présence d'un seau au niveau du poste d'empilage	ps		
		Incrémenter le compteur C1 : (Comptage des seaux constituant une pile)	
		Incrémenter le compteur C2 : (Comptage des seaux à conditionner)	

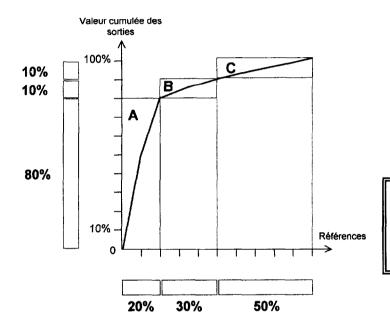

Le tableau suivant regroupe les temps, exprimés en heures, relatifs à l'exploitation de la ligne pendant un an. Cette ligne fonctionne 24h sur 24h, 7j sur 7j sauf les jours suivants : Noël, Nouvel an et 1^{er} mai.

RELEVÉ DE 1	TEMPS (en heu	res)	SECTEU	R : Moulage		MACHIN	IE: Ligne 13
MOIS	Temps requis	Temps de fonction- nement	Σ temps d'arrêt rupture stock amont	Σ temps d'arrêt maintenance préventive	Σ temps d'arrêt changement de production	Σ temps d'arrêt maintenance corrective	Σ temps d'arrêt attente maintenance
Janvier	720	687	-	4	9	2	18
Février	696	671	-	2	10	1	12
Mars	744	692	5	5	7	2	33
Avril	720	686	3	4	11	4	12
Mai	720	670	4	3	10	2	31
Juin	720	674	-	8	8	10	20
Juillet	744	703	-	19	9	1	12
Août	744	686	-	4	12	1	41
Septembre	720	683	2	3	11	4	17
Octobre	744	711	5	11	9	1	7
Novembre	720	672	-	5	10	20	13
Décembre	720	655	7	6	12	12	28
TOTAL.	8712	8190	26	74	118	60	244

^{*®} représente les temps d'arrêt correspondant à des conditions de maintenance et d'exploitation idéales.

Disponibilité intrinsèque DI : Caractérise les qualités intrinsèques d'une entité. La carence des moyens extérieurs et des moyens de maintenance ne sont pas pris en compte.	DI = (4) (4) + (8)
Disponibilité du point de vue maintenance DM : Conforme à la définition de la norme, seule la carence des moyens de maintenance est prise en compte.	$DM = \frac{\textcircled{4}}{\textcircled{4} + \textcircled{6}}$
Disponibilité opérationnelle DO : Caractérise les conditions réelles d'exploitation et de maintenance.	DO = (4) + (5)
Disponibilité globale DG : Caractérise le taux global d'utilisation de l'entité. Donnée : Temps non requis ③ = 72 heures	DG =

METHODE ABC OU DIAGRAMME DE PARETO

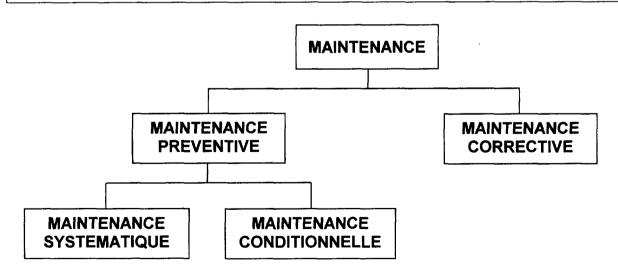

Cet outil, également appelé méthode ABC ou des « 20/80 », est utilisé pour analyser ou rechercher les causes principales d'un problème.

Il permet de localiser, dans une population, les éléments les plus importants en regard d'un critère chiffrable et donc de distinguer les éléments importants de ceux qui le sont moins.

La démarche se base sur le principe statistique que 20% des éléments représentent 80% de la valeur totale. exemples:

- - 20% des voies ferrées assurent 80% du trafic ;
 - 20% des articles fournissent 80% du chiffre d'affaire ;
 - 20% des articles stockés représentent 80 % du coût de stockage.

Cela conduit au tracé d'une courbe dite « ABC » mettant en évidence 3 zones qui correspondent à l'importance relative des causes conduisant à un effet donné.


Zone A: 20% des références représentent 80% de la valeur de sortie.

Zone B: 30% des références représentent 10% de la valeur de sortie.

Zone C: 50% des références représentent 10% de la valeur de sortie.

réalité En ces valeurs de pourcentages ne doivent pas être strictement considérées. Ces proportions doivent être ajustées en fonction du cas étudié.

TYPES DE MAINTENANCE

LE MAGASIN DE TIGES

VOIR DOCUMENT DT 8

Fonctionnement du système

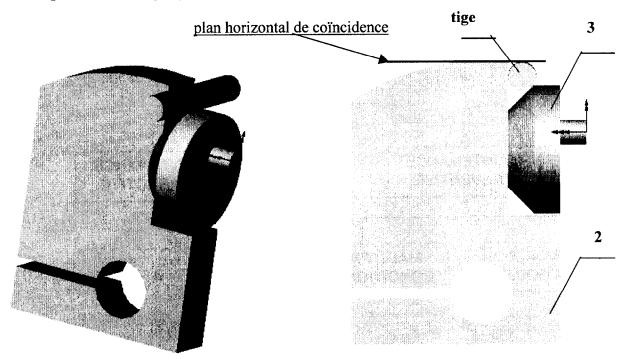
Le magasin de tiges peut contenir environ 2000 tiges. Celles-ci doivent être bien droites.

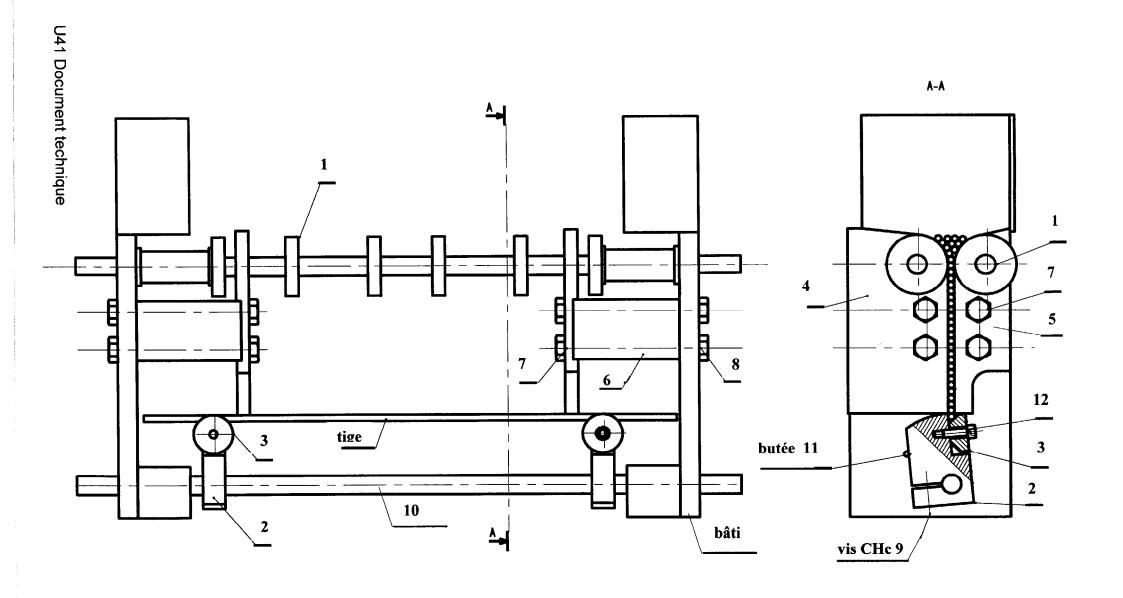
Les tambours de triage (1) dirigent les tiges de manière à ce qu'elles viennent se positionner entre les glissières verticales (4) et (5).

Sous le magasin, on trouve des collecteurs (2) ; ceux-ci sont munis d'un excentrique (3) permettant de régler la coïncidence de la tige en hauteur (voir vue spatiale). Les excentriques seront immobilisés par les vis CHc (12).

Les boulons (7) serviront au réglage horizontal des pièces (4) et (5); rainures oblongues horizontales.

Les boulons (8) serviront au réglage en hauteur des pièces (4) et (5) et (6); rainures oblongues verticales.


La vis CHc (9) sert à réaliser la liaison complète par pincement de (2) avec l'axe de commande (10). Les tiges seront distribuées par les collecteurs .Ceux-ci étant commandés par l'axe (10) (rotation de 30° dans le sens horaire, sur la vue de gauche).Les butées (11), réglables, servent au positionnement angulaire des collecteurs (2).


• Réglages possibles au niveau du magasin des tiges.

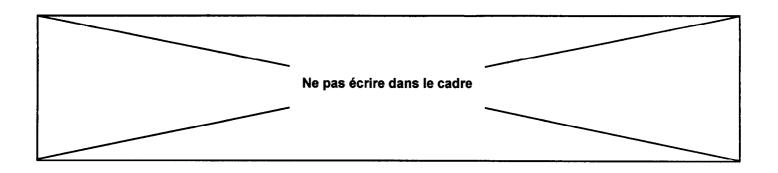
- R1 : Réglage de la distance entre les glissières (4) et (5) ; boulons (7).

 Pour permettre un bon glissement des tiges un jeu de 0.2 à 0.4 mm est nécessaire.
- R2: Réglage de la distance entre la partie basse des pièces (4) et (5), et la partie cylindrique de la pièce (2) afin de permettre un basculement correct de celle-ci; boulons (8). Cette distance sera de l'ordre de 0.3 mm.
- R3 : Réglage de la coïncidence entre la génératrice supérieure de la tige et le plan horizontal de coïncidence.

Vue spatiale du réglage à l'aide de l'excentrique 3.

PLAN DU MAGASIN DE TIGES

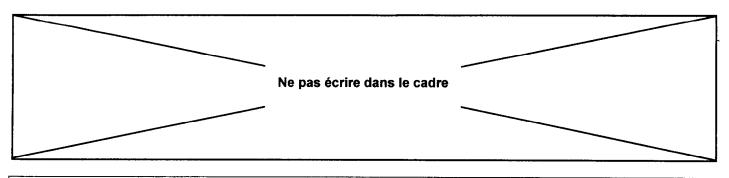
Académie :	Session:	
Examen ou Concours:	Séi	rie:
Spécialité / option :	Repère de	l'épreuve :
Epreuve / sous-épreuve :		
NOM:		
(en majuscules, suivi s'il y a lieu, du nom d'épouse)	NIO du condidat	
Prénoms:	N° du candidat	l side de la completa del completa del completa de la completa del completa del la completa del completa del la completa del
Né(e) le :	(le numéro est celui qui figure	sur la convocation ou sur la liste d'appel)
Sous épreuve U 41 :		
	le des spécifications générale n système pluritechnologique	


DOSSIER REPONSE

LIGNE D'ASSEMBLAGE DE SEAUX

Ce dossier comprend les documents DR 1 à DR 10

Il est constitué de quatre parties indépendantes :


- A. Augmentation de la cadence de production des presses à injecter
- B. Réalisation automatisée de piles de seaux
- C. Recherche des axes d'amélioration envisageables
- D. Notice

La perte de clients au profit de la concurrence oblige l'entreprise à réagir. Afin de retrouver sa compétitivité, elle décide d'engager différentes actions ; l'une d'entre elles consiste à augmenter sa productivité.

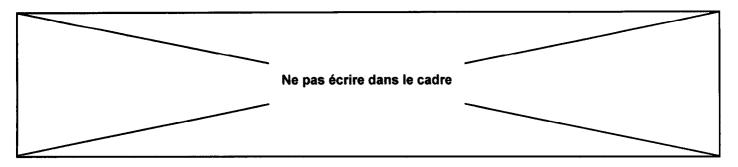
L'étude proposée porte sur quatre des axes devant faire l'objet d'une réflexion :

- Augmentation de la cadence de production des presses à injecter (Partie A).
- Réalisation automatisée de piles constituées d'un nombre de seaux paramétrable en fonction de la demande du client (Partie B).
- Diminution du temps de non production en augmentant la disponibilité de la machine (Partie C).
- Réalisation d'une notice afin d'optimiser le temps au cours d'un changement de modèle de seau (Partie D).

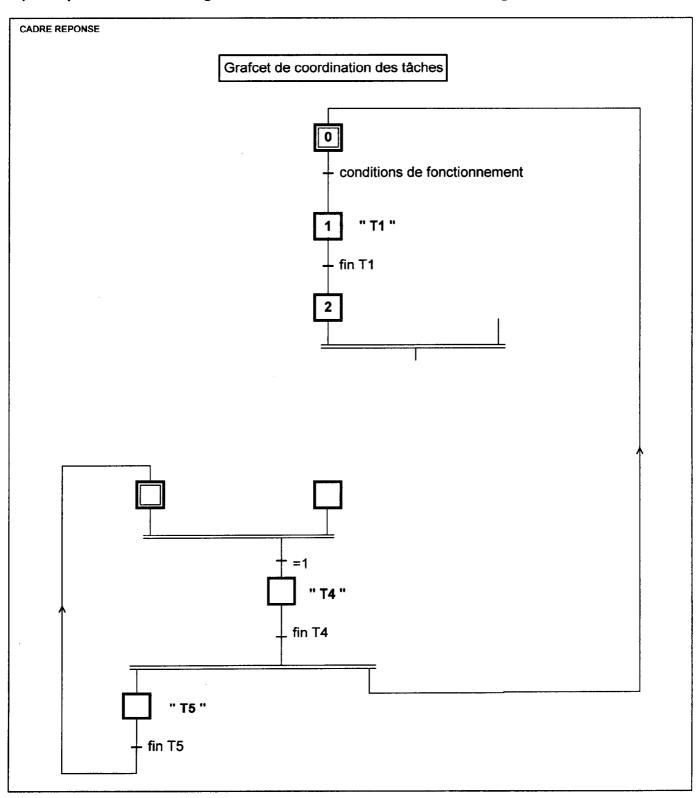
Partie A: AUGMENTATION DE LA CADENCE DE PRODUCTION DES PRESSES A INJECTER

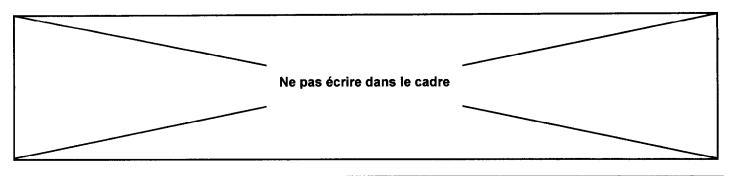
Le fonctionnement de la « machine à anser » peut se découper en cinq tâches :

Documents DS3 et DT2


Repèr e tâche	Définition tâche
T1	Transfert d'un seau depuis le barrage jusqu'au poste d'assemblage de l'anse
T2	Préparation des anses
Т3	Pose d'anse
T4	Transfert d'un seau entre le poste de pose d'anse et le poste d'empilage
Т5	Empilage et évacuation : 1 ^{er} cas de figure : pile incomplète (élévation du seau, accrochage de la pile de seaux, descente de l'élévateur) 2 ^{ème} cas de figure : dernier seau de la pile ou dernier seau du lot de fabrication (élévation du seau, décrochage de la pile, descente de la pile, évacuation de la pile sur le tapis d'évacuation)

Le tableau et le grafcet du document DT1 décrivent la coordination actuelle de ces tâches.


On se propose de réaliser en temps masqué la préparation des anses afin de réduire la durée du cycle. La nouvelle analyse de la coordination des tâches aboutit au tableau suivant :


Repèr e tâche	Le début de la tâche est autorisé si	La fin de la tâche autorise
T.1	fin de T4	Т3
T2	fin de T3	Т3
Т3	fin de T1 ET fin de T2	T2 ET T4
T4	fin de T3 ET fin de T5	T1 ET T5
T5	fin de T4	T4

Cocument Technique DT1

A1) Compléter le nouveau grafcet de coordination des tâches intégrant ces modifications.

Partie B: REALISATION AUTOMATISEE DE PILES DE SEAUX

Problème:

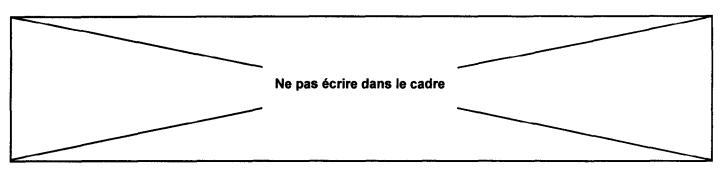
Documents Techniques DT1; DT2; DT3 et DR1: définition tâche

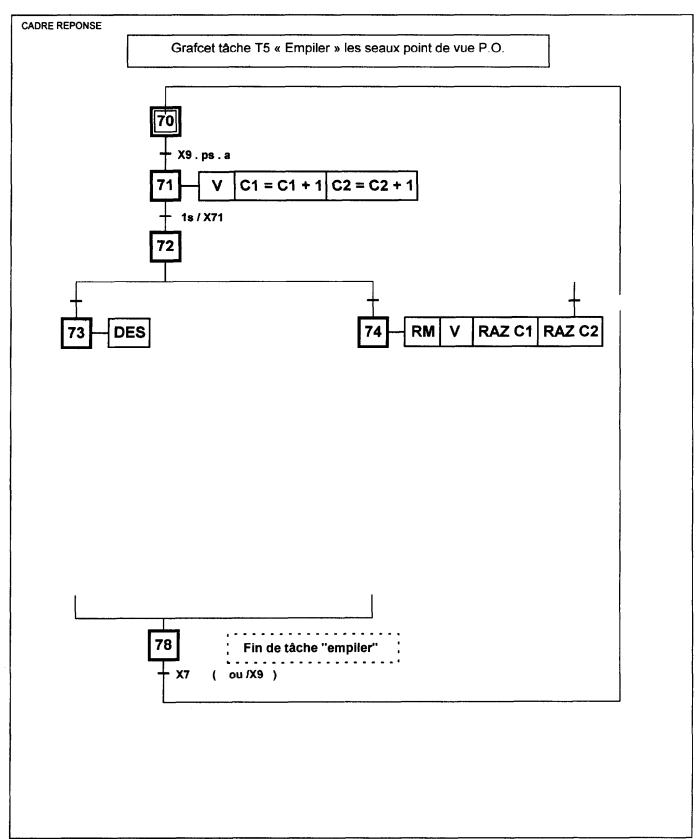
La hauteur d'une pile de seaux dépend de la taille des seaux et du nombre de seaux constituant une pile (Ce nombre est fonction de la demande de conditionnement imposée par le client).

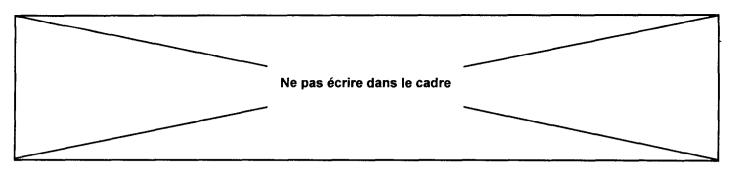
Chaque fabrication nécessite l'intervention d'un régleur qui positionne un fin de course « cp », qui donne une information : « pile complète ».

Afin de gagner du temps à chaque nouvelle gamme de fabrication et pour éviter d'avoir à régler en hauteur ce détecteur « cp », la machine automatisée sera dotée d'une console de dialogue « Homme-Machine » à clavier numérique.

Il suffira à l'opérateur d'entrer au clavier une valeur « X », « X » représentant le nombre de seaux constituant une pile complète et une valeur « Z », « Z » représentant le nombre total de seaux à conditionner pour une commande client donnée.


Exemples:


un client commande 615 seaux **conditionnés en** pile de 25 seaux : **la machine conditionnera** 24 piles complètes de 25 seaux et une pile incomplète de 15 seaux.


$$\Rightarrow$$
 [24 * 25] + [1 * 15] = 615 seaux

un client commande 615 seaux conditionnés en pile de 22 seaux : la machine conditionnera 27 piles complètes de 22 seaux et une pile incomplète de 21 seaux.

A partir de la description du cycle de la tâche « EMPILER » et du tableau de repérage des informations et des actions point de vue P. O., on vous demande de compléter le GRAFCET P.O. de la tâche « EMPILER » en prenant comme valeurs numériques X = 25 et Z = 615 ou laissant les variables littérales X et Z.

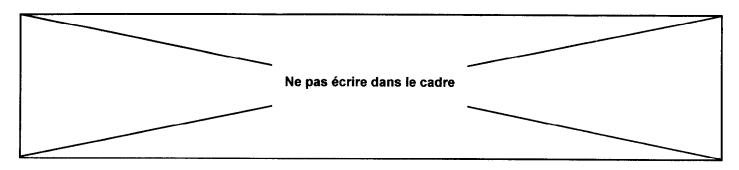
Partie C : Le Bureau des Méthodes décide d'engager les actions suivantes afin d'augmenter la disponibilité de la ligne de production :

- recherche des axes d'améliorations envisageables ;
- recherche des natures de pannes devant faire l'objet d'une étude plus approfondie ;
- proposition de formes de maintenance envisageables pour certains composants sensibles.

RECHERCHE DES AXES D'AMELIORATIONS ENVISAGEABLES

La disponibilité de la ligne de production sur un intervalle de temps donné peut être évaluée par le rapport :

D = temps de disponibilité temps de disponibilité + temps d'indisponibilité


C1) Déterminer les disponibilités suivantes en fonction des différents points de vue considérés.

CADRE REPONSE	
Disponibilité intrinsèque : DI	
Disponibilité du point de vue maintenance : DM	
Disponibilité opérationnelle : DO	
Disponibilité globale : DG	

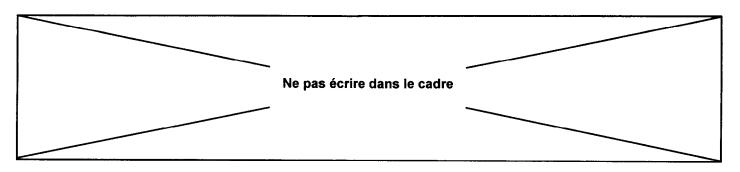
C2) Cocher la solution à envisager en priorité afin d'améliorer la disponibilité opérationnelle. Justifier votre réponse.

Améliorer l'organisation du service production Améliorer l'organisation du service maintenance Justifications : Améliorer les caractéristiques intrinsèques du matériel	CADRE REPONSE	
		Améliorer l'organisation du service production
Justifications : Améliorer les caractéristiques intrinsèques du matériel		Améliorer l'organisation du service maintenance
	Justifications:	Améliorer les caractéristiques intrinsèques du matériel

U41 Document réponse

RECHERCHE DES NATURES DE PANNES DEVANT FAIRE L'OBJET D'UNE ETUDE PLUS APPROFONDIE

Un historique des avaries est établi pour la ligne de production. Dans le tableau ci-après, on trouve : - la date d'intervention ;

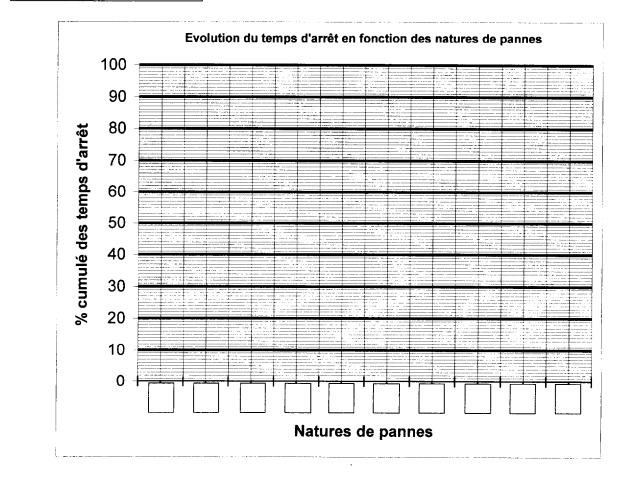

- le temps d'arrêt ;
- la nature du travail effectué et le défaut constaté ;
- le repère de la nature de pannes concernée.

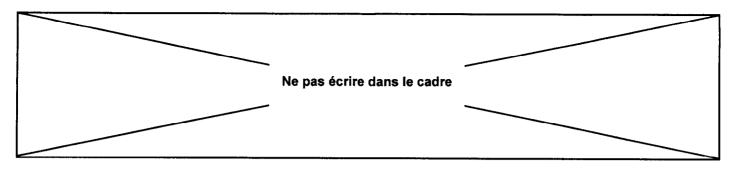
Date	Temps d'arrêt en minutes	Nature du travail / défaut	
17-10-1998	30	Mauvaise trajectoire seau. Réglage vitesse.	
25-10-1998	55	Départ cycle défaillant. Difficulté programmation.	
10-01-1999	85	Avance saccadée du vérin de bouterollage.	
18-01-1999	35	Choc fin de course vérin empilage. Réglage amortissement.	A
05-02-1999	20	Avant par saccade vérin d'empilage. Réglage R.D.U.	Α
19-02-1999	45	Pas de départ cycle. Fin de course cintrage déplacé.	D
08-03-1999	90	Câble détecteur magasin poignées arraché.	С
24-03-1999	30	Arrêt pendant le cycle. Interrupteur porte relâché.	D
18-04-1999	220	Blocage moteur de centrage.	С
22-05-1999	30	Manque de pression pneumatique.	Α
28-05-1999	45	Manque de pression hydraulique.	В
12-06-1999	310	Jeu sur galets cintrage (pendant changement).	Н
17-06-1999	30	Arrêt en cours de cycle.	С
28-06-1999	380	Blocage galet de cintrage.	Н
29-06-1999	75	Mauvais centrage seaux.	E
09-07-1999	45	Capteur fin de course empilage déplacé.	D
07-08-1999	45	Coincement seau dans goulotte d'éjection presse.	
14-09-1999	160	Vitesse vérin de bouterollage déréglée.	
11-10-1999	35	Coincement seau dans goulotte d'éjection presse.	J
18-10-1999	15	Glissières tiges engorgées.	
19-10-1999	35	Cellule détection évacuation pile déplacée.	
03-11-1999	165	Génération vide insuffisante.	
07-11-1999	135	Cliquet d'empilage bloqué.	
07-11-1999	20	Goulotte d'amenée tiges engorgée.	F
17-11-1999	190	Manque de pression hydraulique.	В
19-11-1999	40	Coincement seau dans goulotte d'éjection presse.	J
28-11-1999	240	Verrouillage arrêt d'urgence défaillant.	Н
29-11-1999	85	Interrupteur porte non relâché (trop enfoncé).	D
29-11-1999	320	Rupture axe pompe hydraulique.	В
08-12-1999	25	Goulotte d'amenée tiges engorgée.	
11-12-1999	145	Soupape de sécurité cassée.	
19-12-1999	202	Fuite hydraulique. Joint torique usé.	
23-12-1999	310	Accouplement pompe à réaligner.	В
11-01-2000	165	Vitesse vérin de bouterollage insuffisante. Viscosité huile trop importante.	В
15-01-2000	90	Arrêt moteur. Disjoncteur thermique défectueux.	

Nomenclature des pannes.

Repère Nature	
A	Pneumatique
В	Hydraulique
С	Electrique
D	Organes commande, capteurs
E	Organes de transport seaux

Repère	Nature	
F	Magasins et alimentation pièces	
G	Dimensions seaux ou tiges	
Н	Formage anses	
1	Paramètres presse	
J Ejection presse		


C3) Compléter le tableau puis tracer le diagramme de Pareto présentant l'évolution des temps d'arrêt en fonction de la nature des pannes.


Tracer sur le diagramme les trois zones A, B et C.

Document	Technique	DT6
Document	i cominque	טוט

CAL	RE REPONSE		
	Natures de pannes	Temps d'arrêt en minutes	Rang (de 1 à 10)
	Α	250	
	В	1537	1
	С	430	
	D	295	
	E	240	
	F	45	
	G	15	
	Н	1015	
	l	0	
	J	120	
	Total	3947	

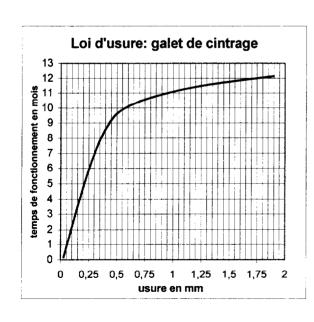
Nature de pannes par ordre décroissant de %	Temps d'arrêt cumulés	% cumulé des temps d'arrêt
В		

		100

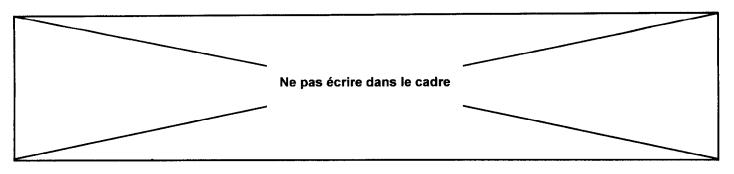
C4) Quelles natures de pannes doivent faire l'objet d'une étude en priorité ? Justifier votre réponse.

eponse.			
CADRE REPONSE			
Natures de pannes :			
Justifications :			
	•		

PROPOSITION DE FORME DE MAINTENANCE POUR UN COMPOSANT SENSIBLE


Un suivi de l'évolution de l'usure des galets de cintrage a été effectué durant 13 mois sur différentes lignes de production similaires. A partir des valeurs d'usures relevées, un modèle de loi d'usure a pu être tracé.

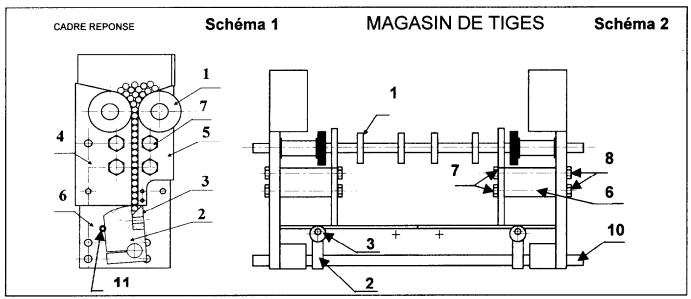
C5) L'entreprise décide d'effectuer un changement des galets de cintrage tous les 9,5 mois. Préciser à quelle forme de maintenance cela correspond. Justifier le choix de cette périodicité en fonction des données et de la forme de la courbe.


Document Technique DT6

<u>Données</u>: - un galet de cintrage est d'un faible prix ; de même, le coût de l'intervention nécessaire pour le changer est négligeable ;

- l'usure maximale tolérable pour le galet est de 0,7 mm.

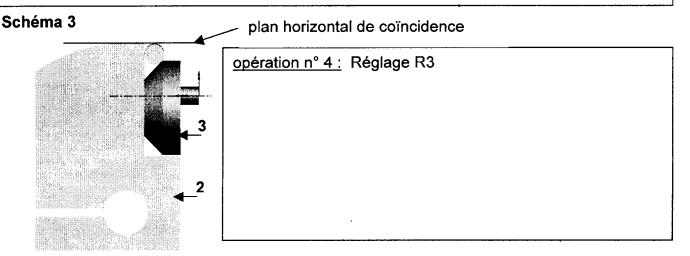
Forme de maintenance :	
Justifications :	



Partie D: NOTICE DU MODE OPERATOIRE POUR LE MAGASIN DE TIGES

Dans le cas d'un changement de production , l'équipe de maintenance doit pouvoir changer rapidement les réglages de la machine à anser ,et notamment régler le magasin de tiges. En effet le type de seau ayant changé , le fil des anses ne fait plus 3,8 mm de diamètre mais 5 mm.

Document Technique DT7 et DT8


D) Etablir le mode opératoire pour les réglages R1, R2 et R3, qui vous semble le plus judicieux pour que le magasin de tiges puisse accepter des tiges de diamètre 5 mm, en précisant les outils nécessaires, les valeurs et la façon de procéder.

opération n° 1 : Vider le magasin des tiges de diamètre 3.8 mm.

opération n° 2 : Réglage R1

opération n° 3 : Réglage R2

