B.T.S. D'ANALYSES BIOLOGIQUES

Session 2000

Sous-épreuve : SCIENCES PHYSIQUES

Durée : 2 heures Coefficient : 2

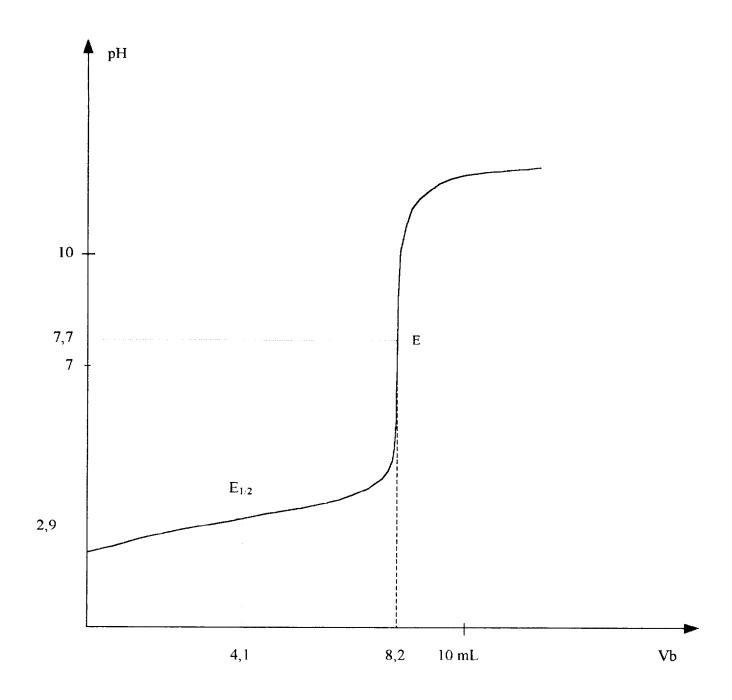
La calculatrice (conforme à la circulaire N°99-186 du 16-11-99) est autorisée

La clarté des raisonnements et la qualité de la rédaction interviendront dans l'appréciation des copies

EXERCICE 1: CONSTANTE D'ACIDITE (10 points)

On se propose de déterminer de deux façons différentes la constante d'acidité K_a et le pK_a du couple CH₂ClCOOH/CH₂ClCOO

1°)


- 1.1. Ecrire l'équation de la réaction de l'acide monochloroacétique CH₂ClCOOH (acide faible) avec l'eau.
- 1.2. Donner l'expression de la constante d'acidité Ka.
- 1.3. Le pH d'une solution S_1 d'acide monochloroacétique de concentration $C_1 = 5,0.10^{-2}$ mol.L⁻¹ vaut 2,1.

Calculer les valeurs des concentrations à l'équilibre.

En déduire les valeurs de Ka et de pKa.

2°) On dose 10 mL d'une solution S_2 du même acide, de concentration C_2 inconnue. On utilise pour cela une solution étalon de soude (Na⁺ + OH) de concentration $C_b = 0,120 \text{ mol.L}^{-1}$. On obtient la courbe suivante :

BTS ANALYSES BIOLOGIQUES	SUJET	Session 2000
Epreuve U32 Sciences Physiques	Durée : 2 heures	Coefficient: 2
CODE : ABE3SC		Page 1/5

V _b mL	0	1	2	3	4	5	6	7
pН	1,97	2,24	2,48	2,69	2,89	3,09	3,32	3,50
V _b mL	7,5	8,0	8,5	9,0	9,5	10	11	12
рН	3,86	4,30	11,0	11,61	11,81	12,10	12,20	12,30

BTS ANALYSES BIOLOGIQUES	SUJET	Session 2000
Epreuve U32 Sciences Physiques	Durée : 2 heures	Coefficient: 2
CODE : ABE3SC		Page 2/5

- 2.1. Ecrire l'équation de la réaction du dosage. Donner la définition de l'équivalence acido-basique.
- 2.2. Déterminer graphiquement le point d'équivalence E. Préciser ses coordonnées. En déduire la concentration de la solution acide.
- 2.3. Déterminer graphiquement le pK_a du couple CH₂ClCOOH/CH₂ClCOO⁻ en justifiant votre réponse.

Donnée : On prendra $Ke = 10^{-14}$

EXERCICE 2: THERMOCHIMIE ET OXYDOREDUCTION (8 points)

On rappelle les relations valables à la température T fixée :

$$\Delta G = - nFE$$

 $\Delta G = \Delta G^{\circ} + RT \ln K$

Données: F = 96500 C $R = 8,31 \text{ J.mol}^{-1}.\text{K}^{-1}$.

1°) En solution aqueuse, dans les conditions standard à 25°C, les ions Fe²⁺ et Fe³⁺ participent aux couples :

couple 1 : Fe^{3-}/Fe^{2-} $E^{\circ}_{1} = 0.77 \text{ V}$ couple 2 : Fe^{2-}/Fe $E^{\circ}_{2} = -0.44 \text{ V}$

- 1.1. Ecrire les deux demi équations électroniques Ecrire l'équation bilan de la réaction spontanée (1) qui se produit entre ces deux couples.
- 1.2. Donner l'expression de la constante d'équilibre K de la réaction précédente en fonction des concentrations.
- 1.3. La thermodynamique permet de calculer K à partir des potentiels standard d'oxydoréduction.

Exprimer $\Delta G^{\circ}{}_{1}$ pour le couple 1, en fonction de $E^{\circ}{}_{1}$

Exprimer ΔG°_{2} pour le couple 2, en fonction de E°_{2}

En déduire l'expression de ΔG de la réaction (1). Calculer sa valeur à 25°C ; en déduire la valeur de K. Conclure.

EXERCICE 3: CHIMIE ORGANIQUE (8 points)

Le jasmin artificiel peut être synthétisé à partir de l'acide 3-phénylprop-2-énoïque : C_6H_5 - CH = CH - COOH dont le nom courant est l'acide cinnamique.

- 1°) Représenter et nommer les deux isomères de cet acide.
- 2°) Par addition de dibrome sur la double liaison, l'acide cinnamique donne un composé B.

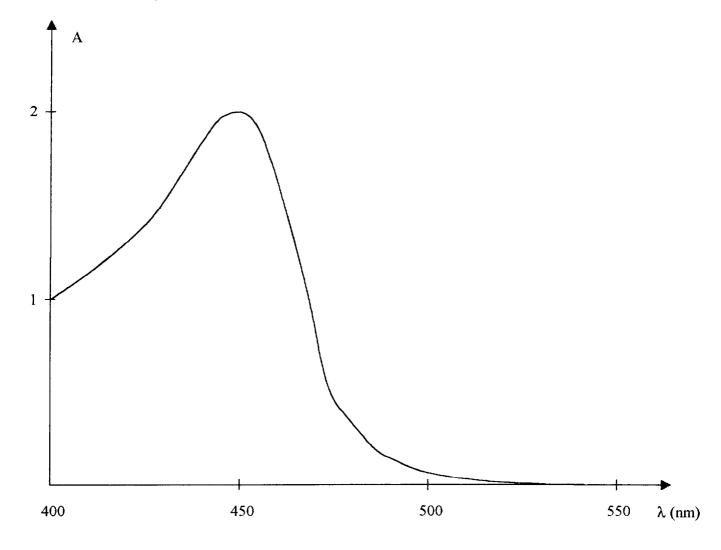
Ecrire l'équation de la réaction

Nommer le composé B.

Combien de carbones asymétriques présente-t-il? Les repérer sur la formule semi-developpée.

Combien de stéréoisomères dénombrera-t-on?

BTS ANALYSES BIOLOGIQUES	SUJET	Session 2000
Epreuve U32 Sciences Physiques	Durée : 2 heures	Coefficient: 2
CODE : ABE3SC		Page 3/5


3°) Par chauffage en milieu basique une molécule de B donne une molécule de HBr, une molécule de CO₂ et une molécule de jasmin artificiel noté C. C est un composé monobromé présentant 2 diastéréoisomères Z et E.

Donner la formule de C et écrire l'équation de la réaction.

EXERCICE 4: SPECTROPHOTOMETRE D'ABSORPTION (14 points)

1°)

- 1.1. Quelle est la relation de définition de la transmittance T d'un milieu ? Donner la relation liant l'absorbance A à la transmittance.
- 1.2. Exprimer la loi de Beer-Lambert en précisant chaque facteur ainsi que son unité dans un système cohérent.
- 2°) On désire doser des solutions d'acide picrique. On réalise au préalable un spectre d'absorption avec une solution à 1,45 g.L⁻¹ et une cuve de largeur 1 cm. Les résultats conduisent au graphe suivant :

BTS ANALYSES BIOLOGIQUES	SUJET	Session 2000
Epreuve U32 Sciences Physiques	Durée : 2 heures	Coefficient: 2
CODE : ABE3SC		Page 4/5

λ 'nm)	400	425	450	475	500	550
Α	1,00	1,40	2,00	0,46	0,05	0,00

- 2.1. Comment choisit-on la longueur d'onde de travail λ_t ? Justifier ce choix.
- 2.2. A cette longueur d'onde, calculer le coefficient d'absorbance linéique molaire. La masse molaire de l'acide picrique est 229 g.mol⁻¹

3°)

3.1. En se plaçant à la longueur l'onde λ_t précédente, on dose une solution (S) d'acide de concentration inconnue. La solution est toujours placée dans une cuve de largeur 1 cm, l'absorbance vaut alors A=0,23

Déterminer la concentration de (S)

La radiation de longueur d'onde λ_t est obtenue à partir d'un réseau à 500 traits par millimètre qui fonctionne en transmission.

4°)

- 4.1. Donner la formule du réseau en précisant sur un schéma les angles et convention de signe.
- 4.2. Le réseau reçoit de la lumière blanche en incidence normal. On veut sélectionner la radiation λ_t dans le spectre d'ordre 1.

Calculer l'angle d'émergence correspondant à cette radiation.

BTS ANALYSES BIOLOGIQUES	SUJET	Session 2000
Epreuve U32 Sciences Physiques	Durée : 2 heures	Coefficient: 2
CODE : ABE3SC		Page 5/5