BREVET DE TECHNICIEN SUPÉRIEUR

ÉLECTROTECHNIQUE

ÉPREUVE E.4.2.

ÉTUDE D'UN SYSTÈME TECHNIQUE INDUSTRIEL CONCEPTION ET INDUSTRIALISATION

SESSION 2020

Durée : 4 heures Coefficient : 3

Matériel autorisé :

« L'usage de calculatrice avec mode examen actif est autorisé,

L'usage de calculatrice sans mémoire « type collège » est autorisé.»

Documents à rendre avec la copie :

- le candidat répondra sur le dossier réponses et des feuilles de copie ;

Dès que le sujet vous est remis, assurez-vous qu'il est complet. Le sujet comporte quatre dossiers :

- le **dossier présentation questionnement** qui se compose de 11 pages, numérotées de 1/11 à 11/11 ;
- le dossier technique qui se compose de 12 pages, numérotées de 1/12 à 12/12 ;
- le dossier ressources qui se compose de 17 pages, numérotées de 1/17 à 17/17 ;
- le dossier réponses qui se compose de 5 pages, numérotées de 1/5 à 5/5.

Il sera tenu compte de la qualité de la rédaction, en particulier pour les réponses aux questions ne nécessitant pas de calcul. Le correcteur attend des phrases construites respectant la syntaxe de la langue française. Chaque réponse sera clairement précédée du numéro de la question à laquelle elle se rapporte.

Les notations du texte seront scrupuleusement respectées.

BTS ÉLECTROTECHNIQUE	SESSION
Épreuve E4.2 : Étude d'un système technique industriel Conception et industrialisation	Code : 20-EQCIN

BREVET DE TECHNICIEN SUPÉRIEUR ÉLECTROTECHNIQUE

SESSION 2020 ÉPREUVE E4.2

Station de captage d'eau brute

PRÉSENTATION - QUESTIONNEMENT

Les quatre parties de l'épreuve sont indépendantes. Cependant, il est conseillé pour une meilleure compréhension du sujet de respecter l'ordre A-B-C-D.

PRÉSENTATION GÉNÉRALE	2
La station de captage de Mauves sur Loire	3
Enjeux et objectifs des sujets E4.1 et E4.2	4
QUESTIONNEMENT	5
Partie A : l'alimentation électrique actuelle permet-elle d'alimenter une nouvelle pompe ?	5
Partie B: quels impacts le changement d'architecture de la livraison 400 V a-t-il sur l'installation?	7
Partie C : comment mettre en œuvre la nouvelle motopompe et ses vannes d'aspiration et refoulement ?	
Partie D : le pilotage des pompes peut-il améliorer l'efficacité énergétique de l'installation ?	? 10

PRÉSENTATION GÉNÉRALE

Nantes Métropole regroupe 24 communes dans le but de faciliter la coopération intercommunale. Autorité organisatrice des services publics de l'eau potable et de l'assainissement, opérateur direct de certaines infrastructures, la métropole intervient à toutes les étapes du grand cycle de l'eau.

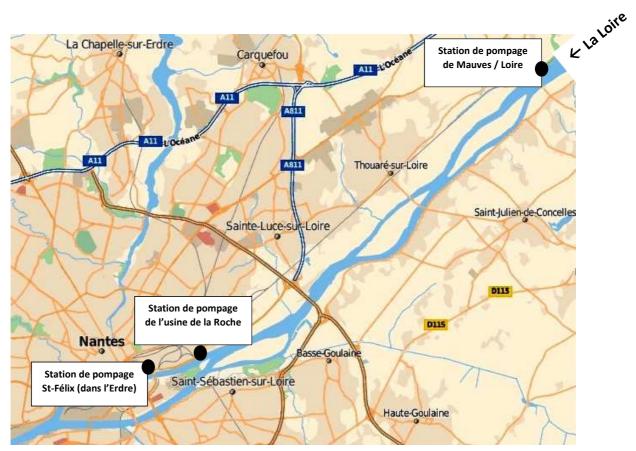


figure 1 : plan de situation

Le système d'approvisionnement en eau potable de Nantes Métropole est constitué d'une ressource protégée et surveillée (la Loire et sa nappe alluviale) et d'une possibilité de secours par importation pour une partie de son territoire

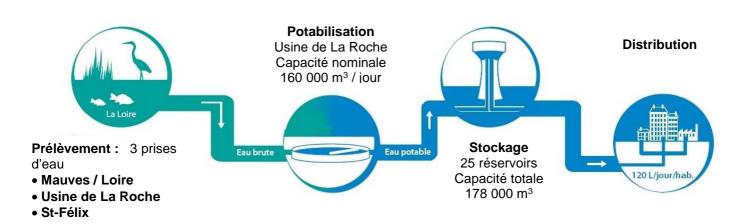


figure 2 : chaîne d'approvisionnement en eau potable

La première étape de la chaîne d'approvisionnement consiste à prélever de l'eau dans le milieu naturel (Loire ou Erdre) via des prises d'eau constituées d'ouvrages de génie civil abritant des pompes de captage (voir figure 1). Ces pompes ont pour rôle d'amener l'eau dite brute vers les installations de traitement où elle sera rendue potable.

La station de captage de Mauves sur Loire (figures 2 et 3) date de 1989. Un renouvellement de certains équipements de l'installation est envisagé pour adapter la capacité de production à l'augmentation du nombre d'usagers de la métropole nantaise à l'horizon 2030. L'amélioration de la disponibilité des équipements ainsi que l'optimisation des consommations énergétiques sont des objectifs importants pour réaliser ce projet.

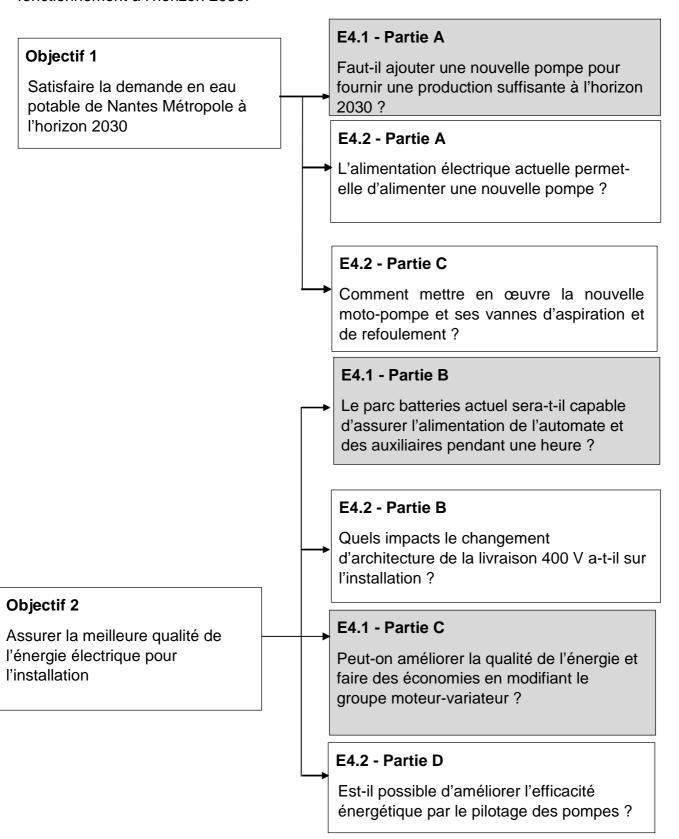



figure 3 : station de Mauves sur Loire

Enjeux et objectifs des sujets E4.1 et E4.2

L'enjeu pour l'autorité organisatrice des services publics de l'eau potable est d'augmenter la capacité d'approvisionnement en eau des 24 communes de Nantes Métropole pour assurer le fonctionnement à l'horizon 2030.

À titre indicatif, le barème de notation des parties A, B, C et D représente respectivement 25%, 30%, 25%, 20% de la note totale.

QUESTIONNEMENT

Partie A : l'alimentation électrique actuelle permet-elle d'alimenter une nouvelle pompe ?

Contexte

L'approvisionnement de l'usine de la Roche à Nantes est réalisé depuis la station de captage de Mauves sur Loire via une conduite de 14,5 km de longueur.

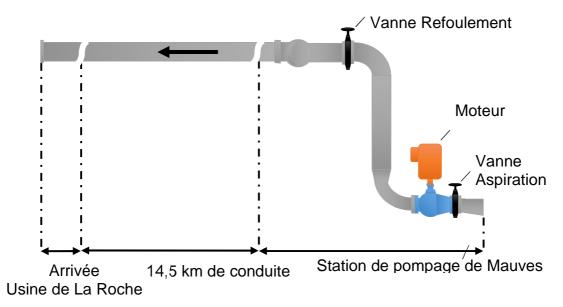


figure 4 : schéma d'une « unité de pompage »

La station de captage de Mauves sur Loire est équipée de trois « unités de pompage » (figure 4). Chacune comprend une tuyauterie d'aspiration avec sa vanne, une autre pour le refoulement avec sa vanne, un « groupe électropompe » composé d'une pompe entrainée par un moteur alimenté par son variateur permettant un débit unitaire de 6 250 m³/h.

La production d'eau dépend de la demande de l'usine de la Roche. À pleine puissance, il y a toujours une pompe à l'arrêt pour pouvoir remplacer une éventuelle pompe défaillante. C'est un principe de sureté de fonctionnement imposé et nommé « redondance n-1 ».

Des essais sur site, réalisés avec une seule pompe entrainée à 1 000 tr/min, ont permis d'obtenir une production de 6 000 m³/h pour la hauteur manométrique maximale de 39 mètres. Pour ce point de fonctionnement, le rendement de la pompe est de 85 %, celui du variateur est de 98 % et celui du moteur est de 95 %. Le dispositif de compensation intégré dans chaque variateur permet d'obtenir cos φ = 1 au niveau de l'alimentation 690 V.

On admettra que lorsque plusieurs pompes fonctionnent en parallèle les débits s'additionnent pour une même hauteur manométrique.

À l'horizon 2030, la station de captage souhaite atteindre un débit maximum de 15 000 m³/h.

Pour atteindre cet objectif, il est envisagé d'installer une 4e « unité de pompage ».

Le principe de « redondance n-1 » doit toujours être conservé. C'est-à-dire que la pleine puissance de production sera atteinte avec trois pompes en service.

Informations complémentaires

Formule de la puissance hydraulique (en Watt) :

P_{Hydraulique}= ρ -g-h-Q avec h en mètre, Q en m³/s, ρ en kg/m³, g=9.81m/s²

avec une masse volumique approximative de 1000 kg/m³ pour l'eau brute.

Documents nécessaires pour cette partie :

- A.1. Le transformateur TR1 peut-il alimenter la nouvelle installation?
 - A.1.1. **Calculer** la puissance hydraulique pour la hauteur manométrique maximale de l'installation et pour un débit de 6 000 m³/h.
 - A.1.2. **Calculer** alors la puissance électrique consommée par un seul groupe motovariateur produisant 6 000 m³/h pour la hauteur manométrique maximale de l'installation. Vous pourrez éventuellement appuyer votre raisonnement sur un schéma représentatif de la chaine de puissance.

On admet que la puissance soutirée par TR2 est négligeable devant celles des motopompes.

A.1.3. **Indiquer** si la puissance du transformateur TR1 est suffisante pour envisager une production théorique dans la nouvelle installation de 18 000 m³/h avec trois pompes en service.

Proposer une nouvelle valeur de puissance et justifier le choix d'un nouveau transformateur si besoin.

A.2. Justification du choix du nouveau matériel associé au transformateur TR1.

L'ingénieur a fait le choix de prendre un nouveau transformateur TR1 de 2 500 kVA. On admet une valeur de puissance de court-circuit du réseau amont de 500 MVA; ce qui correspond à un courant de court-circuit de 15 kA en amont du transformateur.

- A.2.1. **Choisir** la référence de la cellule SM6 de protection par fusible du nouveau transformateur TR1 (cellule non représentée sur DTEC1). Cette cellule doit être équipée d'un transformateur d'intensité nécessaire au comptage HT.
- A.2.2. **Justifier** les caractéristiques de l'interrupteur fusible vis-à-vis de celles de l'installation. À l'aide des éléments suivants : tension assignée, pouvoir de coupure maximal (Isc) et courant assigné (Ir).
- A.2.3. **Justifier** le choix du fusible de protection HT en précisant la tension assignée, le calibre et le modèle retenu.
- A.2.4. **Justifier** le choix de disjoncteur « SOURCE » (placé au secondaire de TR1 et repéré « 01Q1 ») en précisant les critères de tension, de courant d'emploi, du pouvoir de coupure et du nombre de pôles.
- A.2.5. **Préciser** les réglages Ir et Isd du déclencheur « Micrologic 2.0E » associé à ce disjoncteur (le seuil de protection contre les courts-circuits sera réglé à 16 kA).

Partie B : quels impacts le changement d'architecture de la livraison 400 V a-t-il sur l'installation ?

Contexte

Pour renforcer la disponibilité de l'énergie au niveau des circuits terminaux auxiliaires, Nantes Métropole souhaite une alimentation des trois tableaux divisionnaires directement depuis le réseau HT 20 kV et non depuis le réseau BT 690 V.

Les composants auxiliaires (vannes d'aspiration et de refoulement par exemple) liés à la nouvelle ligne de pompe et alimentés en 400 V imposent d'établir un nouveau bilan de puissance au niveau du TSBT 400V.

L'armoire « TSBT 400V » alimente les armoires « TDA », « Process Pompage » et « Process & Automate ». La puissance de l'onduleur est négligeable.

L'armoire « TDA » alimente les dispositifs de chauffage et d'éclairage de l'usine pour une puissance installée : P = 60 kW avec $\cos \varphi = 0.9$.

L'armoire « Process Pompage » alimente les vannes motorisées d'aspiration et de refoulement, le réchauffage des moteurs des vannes de refoulement, les pompes d'assèchement et de nettoyage. En prenant en compte les équipements liés à la nouvelle pompe, les caractéristiques sont les suivantes : P = 50 kW avec $\cos \varphi = 0.8$.

L'armoire « Process & Automate » alimente les circuits de commande des variateurs et des pompes, l'automate programmable et ses cartes d'entrées/sorties, les relais d'automatisme, les voyants de signalisation et les différents capteurs de vitesse, débit, pression... soit S = 42 kVA avec $\cos \phi = 0.95$.

Pour prendre en compte l'augmentation de puissance liée aux équipements associés à la nouvelle pompe, le disjoncteur source 05Q2 a été remplacé par un NSX400F associé à un déclencheur Micrologic 2. Le courant d'emploi du circuit protégé par ce disjoncteur sera pris égal 350 A.

Pour la détermination des courants de court-circuit, on néglige les impédances du câble reliant le transformateur TR2n au disjoncteur 05Q2.

Documents nécessaires pour cette partie :

- B.1 Justification du choix du nouveau transformateur TR2n et du matériel associé.
 - B.1.1. **Compléter** le DREP1 et préciser la puissance apparente normalisée choisie pour le transformateur TR2n et son courant nominal.
 - B.1.2. **Justifier** le choix du nouveau disjoncteur source 05Q2 de référence NSX400F selon quatre critères à définir.
 - B.1.3. **Préciser** les réglages lo, Ir et Isd du déclencheur Micrologic 2 associé à 05Q2 (le seuil de protection contre les courts-circuits doit-être réglé à 3 500 A).
- B.2 L'ingénieur responsable de l'installation, demande de vérifier si le disjoncteur 06Q4 en « réserve » sur le DTEC3 pourrait permettre l'alimentation du circuit de réchauffage du moteur de la vanne de refoulement de la 4^e « unité de pompage ». Les normes de protection des personnes et des biens doivent être vérifiées.
 - B.2.1. **Calculer** le courant d'emploi imposé par la résistance du circuit de réchauffage du moteur de la vanne de refoulement de la 4^e « unité de pompage ».
 - B.2.2. **Déterminer** le courant de court-circuit au niveau du réchauffage du moteur de la vanne de refoulement.
 - B.2.3. **Vérifier** si la protection des personnes est satisfaisante au niveau du réchauffage du moteur de la vanne de refoulement.
 - B.2.4. **Vérifier** la conformité par rapport à la norme de la section du câble 5G25 d'alimentation du « Process Pompage ».
 - B.2.5. **Déterminer** la chute de tension totale en pourcentage obtenue au niveau du circuit de réchauffage du moteur de la vanne de refoulement. On considère la tension en charge au secondaire du transformateur TR2n égale à 400 V. Conclure par rapport à la norme.
 - B.2.6. **Rédiger** un courrier argumenté adressé au chef de service ; expliquer si le départ en réserve, protégé par le disjoncteur 06Q4, peut être utilisé pour l'alimentation du circuit de réchauffage.

Partie C: comment mettre en œuvre la nouvelle motopompe et ses vannes d'aspiration et de refoulement ?

Contexte

L'étude porte sur l'intégration de ce nouveau départ dans les schémas électriques. Pour cela, l'ingénieur responsable propose, dans un premier temps, d'étudier le principe de pilotage des vannes existantes et la logique de mise en service et d'arrêt des pompes.

Il est demandé, dans la mesure du possible, d'exploiter les réserves (composants, entrées/sorties d'automate...) prévues dans l'installation initiale.

Pour le repérage des schémas électriques, les composants et les nouveaux fils sont repérés selon la méthode de l'entreprise : n° du folio d'origine suivi du n° du nouveau composant ou fil.

Documents nécessaires pour cette partie :

- C.1 Étude et modifications des schémas des vannes d'aspiration et de refoulement.
 - C.1.1. À partir de l'étude des schémas figurant sur DTEC4, **compléter**, sur le document réponse DREP2, le chronogramme permettant de décrire l'évolution de l'état des bobines et des voyants de la vanne d'aspiration 1.
 - C.1.2. À partir de l'étude des schémas figurant sur DTEC5, **compléter**, sur le document réponse DREP3, le chronogramme permettant de décrire l'évolution de l'état des bobines et des voyants de la vanne de refoulement 1.
 - C.1.3. Proposer, sur le DREP4, le schéma de raccordement des deux nouveaux relais de commande de la vanne de refoulement. La méthode de repérage de l'entreprise devra être respectée.
 - C.1.4. **Dessiner**, sur le DREP5, le schéma de puissance (fonctionnement et protection) du départ de la nouvelle vanne (utiliser les repères de votre choix pour le matériel).
- C.2 Étude et réalisation du schéma de commande du moteur de la nouvelle pompe.
 - C.2.1. Après avoir pris connaissance du DTEC8, **compléter** le grafcet fonctionnel de la phase d'arrêt de la pompe sur le document réponse DREP6.
 - C.2.2. À partir de la documentation du variateur DRES16, compléter, sur le DREP7, le schéma de commande du variateur de la nouvelle pompe en raccordant les deux boutons poussoirs Bp+ et Bp- ainsi que le contact 30KA4 de validation (ou d'inhibition) du variateur.

Partie D : le pilotage des pompes peut-il améliorer l'efficacité énergétique de l'installation ?

Contexte

L'ingénieur responsable demande d'étudier la stratégie de pilotage des pompes de l'installation actuelle et d'analyser les différents relevés de production d'eau et de consommation d'énergie effectués par les enregistreurs de la station de pompage.

Il est demandé de proposer des pistes de réflexion sur la stratégie d'exploitation permettant d'avoir jusqu'à trois pompes en production avec la meilleure efficacité énergétique possible.

Dans la nouvelle configuration, la 4^e pompe est à l'arrêt pour respecter la redondance (n-1).

Fonctionnement de l'installation actuelle en mode automatique :

la permutation des trois pompes permet d'éviter l'usure prématurée d'un groupe motopompe par rapport aux deux autres. Le comptage du temps de fonctionnement de chaque unité de pompage (hors étude) ainsi que le débit demandé permettent de décider du nombre et du numéro de la pompe ou des deux pompes à mettre en fonctionnement. La 3e pompe est toujours à l'arrêt pour respecter la redondance (n-1)

Dans le principe général actuel, l'automate programmable détermine le nombre de pompes en fonction du débit souhaité :

- débit inférieur à 4 500 m³/h : une seule pompe en fonctionnement,
- débit supérieur à 4 500 m³/h : deux pompes en fonctionnement à la même vitesse en régime établi.

Le rendement d'un groupe motopompe alimenté par un variateur de vitesse dépend essentiellement du rendement de la pompe. Par conséquent, dans cette partie, les rendements des variateurs et des moteurs sont : $\eta_{\text{variateurs}} = 100\%$ et $\eta_{\text{moteurs}} = 100\%$.

Rappel : des essais sur site, réalisés avec une seule pompe entrainée à 1 000 tr/min, ont permis d'obtenir une production de 6 000 m³/h pour la hauteur manométrique maximale de 39 mètres. Pour ce point de fonctionnement, le rendement de la pompe est de 85%.

Documents nécessaires pour cette partie :

Étude de la permutation des pompes et analyse des relevés du 9 au 11 janvier 2019.

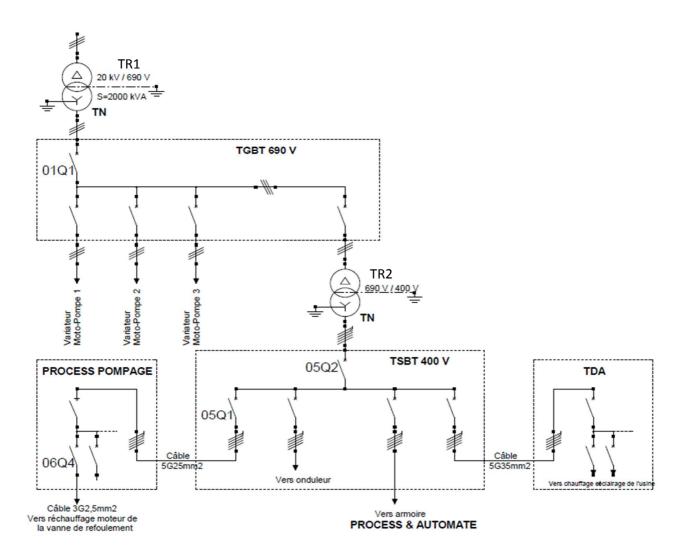
- D.1. À partir des DTEC9 et DTEC10, **compléter** le tableau sur le DREP8 en précisant l'état de fonctionnement des pompes. **Préciser**, pour chaque phase de régime établi, la vitesse de la pompe, son rendement et le débit total de la station.
- D.2. Pour le « point 1 » indiqué sur le DTEC11, **déterminer** le débit de la station de pompage et le rendement de la pompe à partir de la caractéristique η =f(Q) disponible sur le DTEC10.
- D.3. Pour le « point 2 » **reprendre** la même démarche et **déterminer** le rendement de chaque pompe à partir de la caractéristique η=f(Q) disponible sur le DTEC10.
- D.4. **Déterminer** le rapport « débit de sortie » sur « puissance consommée » pour les deux points précédents. **Commenter** ces résultats.
- D.5. **Proposer** une modification de la valeur du seuil de basculement d'une à deux pompes actuellement réglé à 4 500 m3/h. **Expliquer** cette préconisation à l'aide des courbes de rendement DTEC10.

BREVET DE TECHNICIEN SUPÉRIEUR

ÉLECTROTECHNIQUE

SESSION 2020 ÉPREUVE E4.2

Station de captage d'eau brute

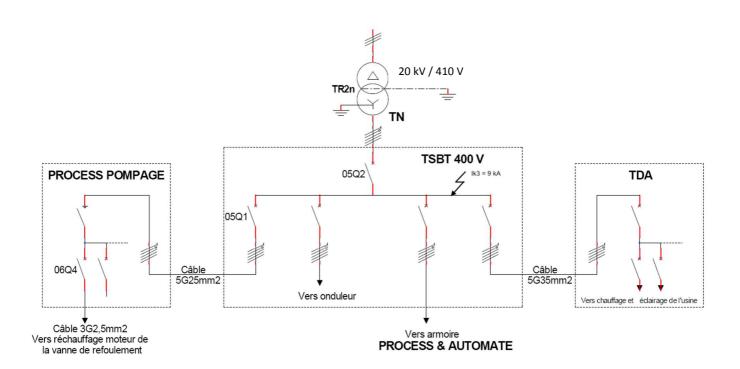

DOSSIER TECHNIQUE

OTEC1 : schéma électrique de l'installation	2
OTEC2 : schéma d'alimentation des circuits terminaux auxiliaires	3
OTEC3 : schéma électrique du réchauffage des moteurs des vannes de refoulement	4
OTEC4 : schéma « Process Pompage » de la vanne d'aspiration de la pompe 1	4
OTEC5 : schéma «Process Pompage » de la vanne de refoulement de la pompe 1	6
OTEC6 : schéma « Process & Automate » de la vanne de refoulement de la pompe 1	7
OTEC7 : schéma « Process & Automate » Sorties TOR	8
OTEC8 : grafcet fonctionnel de la phase de démarrage d'une pompe	9
OTEC9 : commutation des pompes en mode automatique	. 10
OTEC10 : courbes de rendement à différentes vitesses en fonction du débit pour une pompe.	. 11
OTEC11 : relevés « Station de pompage » du 9 au 11 janvier 2019	. 12

Dossier technique 20-EQCIN Page 1/12

DTEC1 : schéma électrique de l'installation

Certaines données techniques figurant dans ces documents ont été adaptées au sujet afin de satisfaire un caractère de sureté



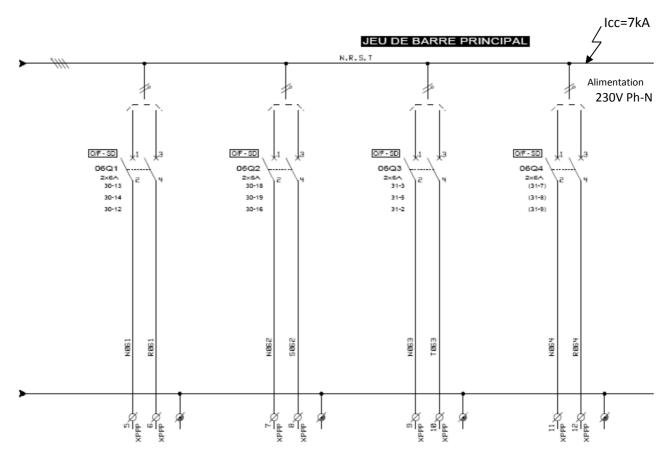
TR1 est le transformateur 20 kV / 690 V d'alimentation des trois variateurs des pompes et de TR2.

TR2 est le transformateur 690 V / 400 V d'alimentation des autres armoires électriques.

L'installation est en régime TN.

Dossier technique 20-EQCIN Page 2/12

TR2n est le nouveau transformateur 20 kV / 410 V d'alimentation des circuits terminaux auxiliaires.


L'installation est en régime TN.

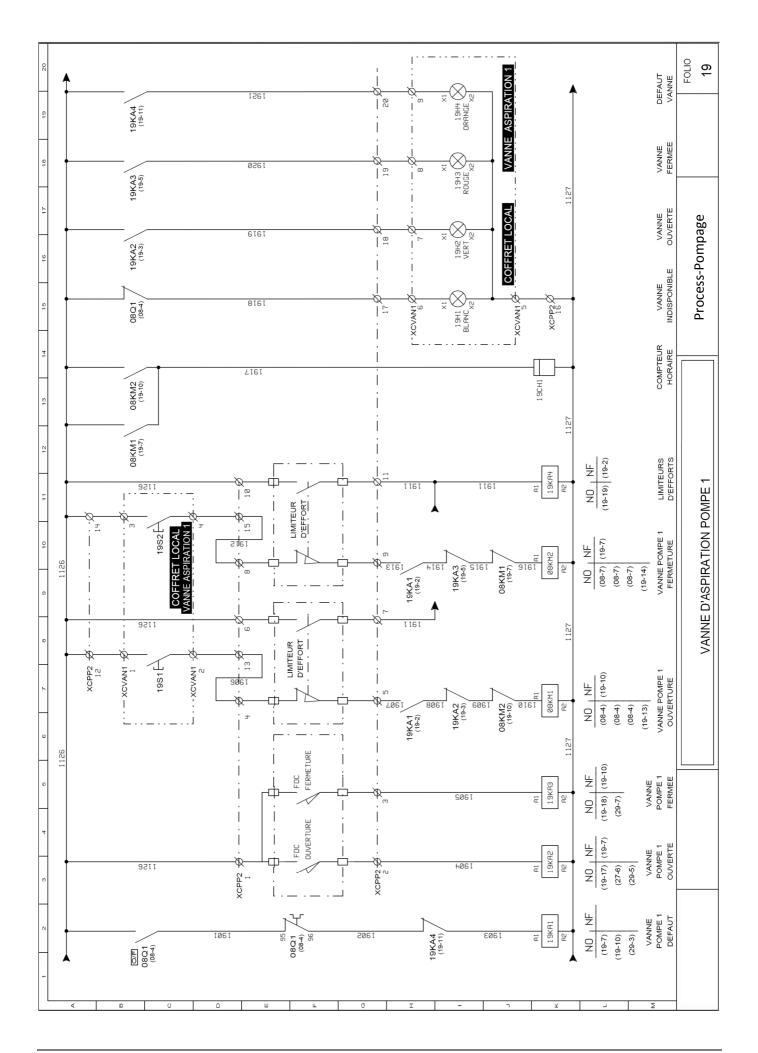
Le disjoncteur de départ 05Q1 est un NSX100F calibré pour un courant d'emploi de 100A.

Le câble d'alimentation 5G25 de l'armoire « Process Pompage » est en cuivre, d'une longueur de 30 m, en Polyéthylène Réticulé (PR). Il est installé seul, sous caniveau et la température ambiante est de 35°C. Le neutre n'est pas chargé Kn=1.

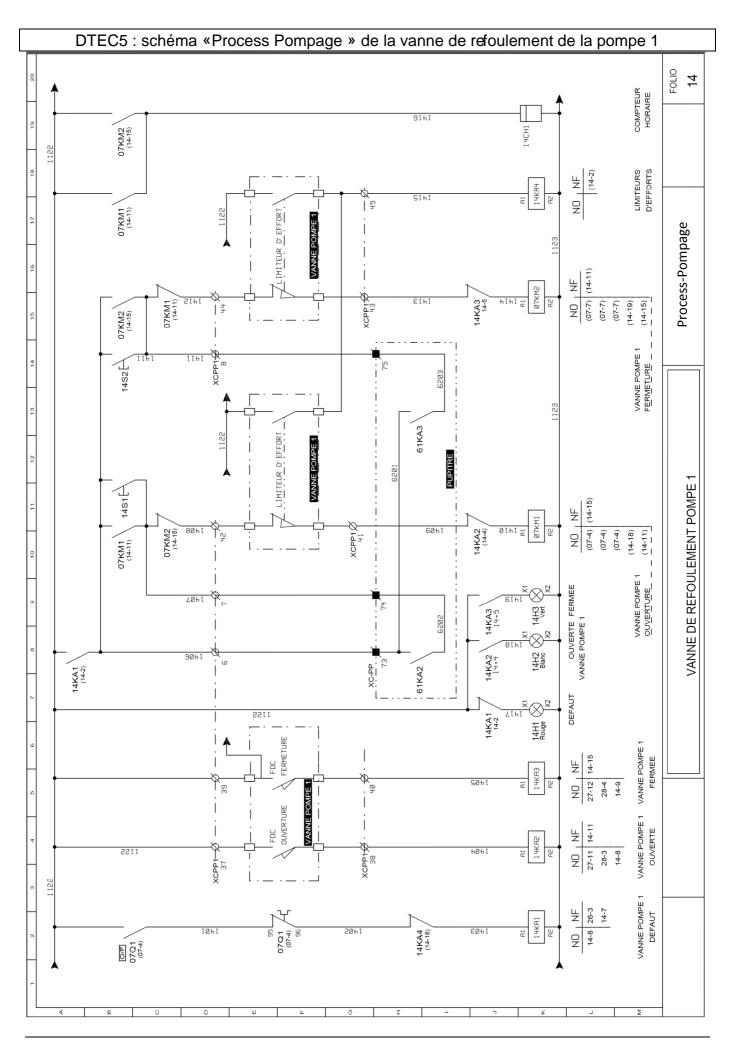
La chute de tension provoquée par ce câble 5G25 est de 1% de la tension secondaire du transformateur. Les chutes de tension à l'intérieur des armoires électriques sont négligées.

Dossier technique 20-EQCIN Page 3/12

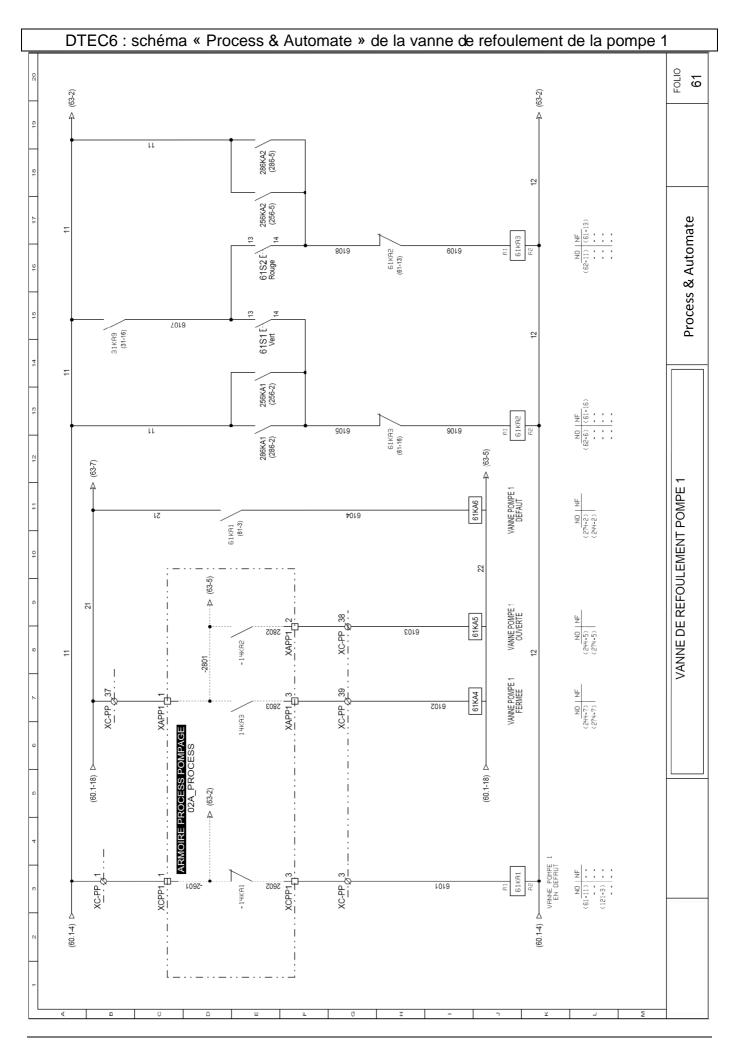
REDERE CABLE	02ACP01	02ACP02	02ACP03	02ACP04
DESIGNATION DU CIRCUIT	RECHAUFFAGE MOTEUR VANNE DE REFOULEMENT 1	RECHAUFFAGE MOTEUR VANNE DE REFOULEMENT 2	RECHAUFFAGE MOTEUR VANNE DE REFOULEMENT 3	RESER∀E
SECTION	R2V 3 G 2,5 ²	R2√ 3 G 2,5²	R2V 3 G 2,5 ²	R2V 3 G 2.5 ²
PROTECTION DU CIRCUIT	DISJONCTEUR 2x6A	DISJONCTEUR 2x8A	DISJONCTEUR 2x6A	DISJONCTEUR 2x6A
I th	6A	6A	6A	6A
PUISSANCE	1300 W	1300 W	1300 W	1300 W

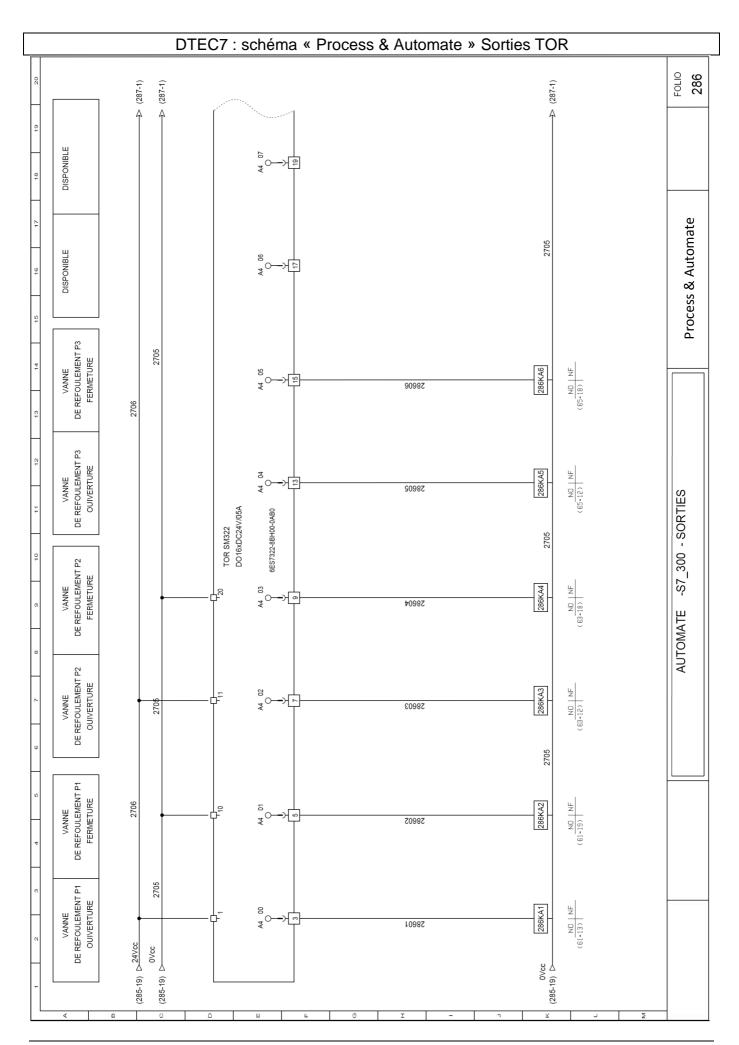

Le disjoncteur 06Q4, prévu en réserve, est déjà câblé dans l'armoire « Process Pompage ». Il pourrait-être raccordé à un câble en cuivre R2V 3G2.5 de repère 02ACP04 de 24 mètres de longueur si les préconisations de la norme NFC-15 100 sont respectées au niveau de la protection des biens et des personnes.

Le disjoncteur bipolaire 06Q4 est un modèle iC60N Courbe C 6A avec un pouvoir de coupure de 10 kA et une tension d'emploi maxi de 440V.


Le courant de court-circuit du jeu de barre principal de l'armoire «Process Pompage» est de 7 kA.

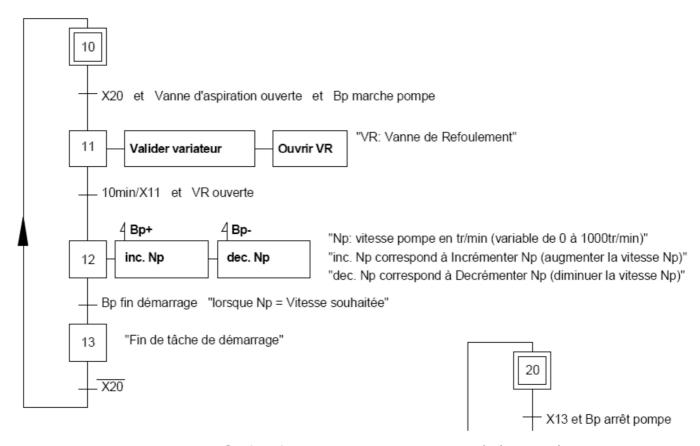
DTEC4 : schéma « Process Pompage » de la vanne d'aspiration de la pompe 1


Dossier technique 20-EQCIN Page 4/12


Dossier technique 20-EQCIN Page 5/12

Dossier technique 20-EQCIN Page 6/12

Dossier technique 20-EQCIN Page 7/12


Dossier technique 20-EQCIN Page 8/12

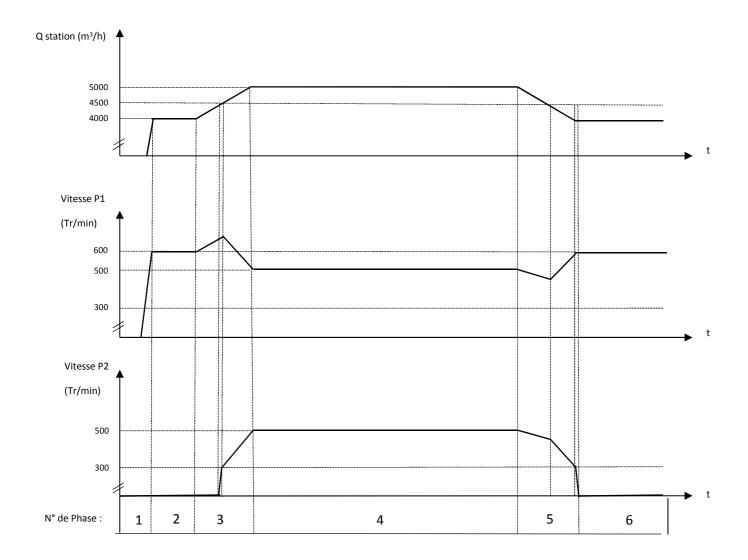
Phase de démarrage de la nouvelle pompe seule pilotée par l'automate programmable :

pour démarrer la pompe, il faut appuyer sur le Bp « marche pompe », ce qui provoque la validation du variateur et l'ouverture de la vanne de refoulement VR.

Après 10 minutes, si la vanne de refoulement est ouverte, l'opérateur peut alors ajuster la vitesse de rotation du moteur de la pompe en appuyant sur les boutons poussoirs Bp+ « plus vite » ou Bp- « moins vite » pour obtenir le débit souhaité. Le bouton poussoir « Bp fin de démarrage » permet de valider le débit de production d'eau choisi.

Grafcet fonctionnel de la phase de démarrage

Grafcet fonctionnel de la phase d'arrêt à compléter sur DREP6

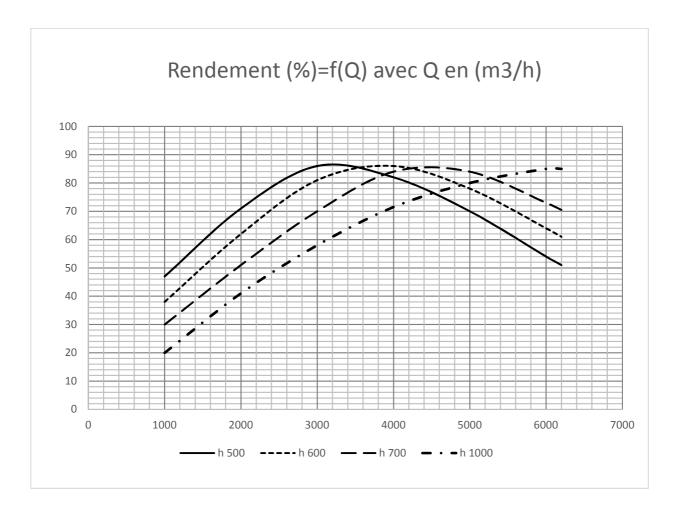

Phase d'arrêt de la nouvelle pompe seule pilotée par l'automate programmable :

Pour arrêter une pompe depuis la salle de conduite, appuyer sur le bouton poussoir Bp « arrêt pompe » puis diminuer la vitesse de rotation par Bp- « moins vite » jusqu'à 0 tr/min. Le variateur reçoit alors un ordre d'arrêt « inhiber variateur » et 5 secondes après, la vanne de refoulement doit se fermer automatiquement. Les deux grafcets sont alors initialisés.

Dossier technique 20-EQCIN Page 9/12

Principe théorique de fonctionnement de l'installation actuelle en mode automatique :

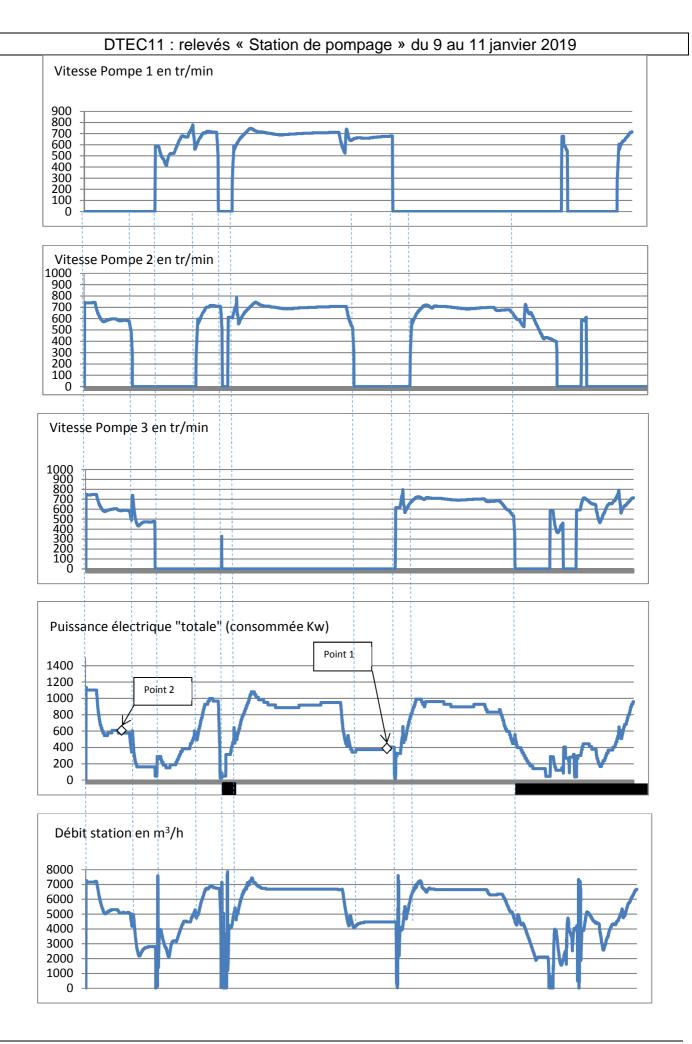
Commutation de 1 pompe à 2 pompes et inversement (permutation hors étude):



Remarque : la vitesse de 300 tr/min correspond à la vitesse minimale en dessous de laquelle une pompe ne débite pas.

Rappel : lorsque deux pompes fonctionnent en même temps et à la même vitesse, chaque pompe produit la moitié du débit total.

En régime établi, lorsque plusieurs pompes fonctionnent en parallèle, pour éviter des perturbations hydrauliques, elles doivent tourner à la même vitesse et donc produire le même débit unitaire.


Dossier technique 20-EQCIN Page 10/12

Légende:

h 500 : 1 pompe à la vitesse de 500 tr/min h 600 : 1 pompe à la vitesse de 600 tr/min h 700 : 1 pompe à la vitesse de 700 tr/min h 1000 : 1 pompe à la vitesse de 1000 tr/min

Dossier technique 20-EQCIN Page 11/12

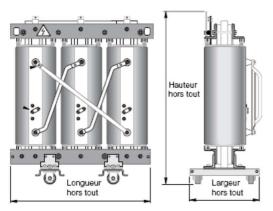
BREVET DE TECHNICIEN SUPÉRIEUR

ÉLECTROTECHNIQUE

SESSION 2020 ÉPREUVE E4.2

Station de captage d'eau brute

DOSSIER RESSOURCES


DRES1 : transformateurs secs Trihal abaisseurs	2
DRES2 : références des cellules SM6	3
DRES3 : caractéristiques générales des cellules SM6	4
DRES4 : caractéristiques générales des cellules SM6 (suite)	5
DRES5 : fusibles de protection des transformateurs HT	6
DRES6 : disjoncteur Masterpact NW	7
DRES7 : unités de contrôle Micrologic	8
DRES8 : disjoncteur Compact NSX	9
DRES9 : caractéristiques des transformateurs 20 kV / 410 V et de leurs disjoncteu	ırs associés10
DRES10 : choix de câbles (1/2)	11
DRES11 : choix de câbles (2/2)	12
DRES12 : chutes de tension admissibles	13
DRES13 : courants de courts-circuits	14
DRES14 : longueurs maximales des canalisations en régime TN	15
DRES15 : documentation de câblage de la vanne de refoulement	16
DRES16 : circuit de commande du variateur du moteur de pompe	17

Dossier ressources 20-EQCIN Page 1/17

400-410-690 Transformateurs Trihal abaisseurs • 15 Caractéristiques techniques au 1 juillet 2015 selon EU 548/2014 Puissance kVΑ 100 160 250 400 630 800 1 000 1 250 1600 2 000 2 500 Type de pertes AoBk AoAk W 750 1 100 3 100 Pertes à vide 280 400 520 1.300 1.550 1.800 2 2 0 0 2 600 Pertes en charge à 120°C W 2 050 2 900 3800 5 500 7 600 8 000 9 000 11 000 13 000 16 000 19 000 Tolérance sur les pertes Sans dépassement de pertes Mode de fonctionnement Abaisseur Type d'installation Intérieur Tension C/C % 6 Tension Primaire ΚV 15 - 15,5 - 17,5 - 20 Tension Secondaire à vide V 400 - 410 - 690 ΚV Niveau d'isolement Décharges partielles Inférieures ou égale à 5pC à 1,3Um Fréquence Hz Prises de réglages % ± 2,5; ± 5 Couplage Dyn11 Altitude maxi 1 000 m Temperature ambiante maxi °C 40 Connexion HT et BT Sur plages Puissance accoustique dB(A) 51 57 60 62 64 65 67 68 70 71 Pression acoustique à 1 m dB(A) 39 42 44 47 49 51 51 53 54 55 56 Courant à vide (valeur indicative) 0,6 0,6 0,5 0,5 0,2 0,4 0,3 0,3 0,3 0,2 0,2 Courant d'enclenchement le / In crête (HT) 8,5 8,5 8,5 8,7 7,0 8,9 8,8 8,6 8,5 8,5 7,7 0.24 0.27 0.30 0.35 0.34 constante de temps, sec-0.11 0.11 0.11 0.13 0.18 0.48 (valeurs indicatives) charge à 100 % 97,723 97,979 98,301 98,462 98,638 98,851 98,956 99,986 99,059 99,079 99,124 Rendement % $\cos \varphi = 1$ charge à 75 % % 98,125 98,335 98,602 98,735 98,875 99.043 99,126 99,155 99,214 99,233 99,270 Rendement charge à 100 % 97,170 97,487 97,886 98,084 98,303 98,568 98,698 98,736 98,826 98,851 98,907 % $\cos \varphi = 0.8$ 98,946 charge à 75 % 97,667 97,928 98,259 98,424 98,598 98,806 98,910 99,019 99,043 99,089 1 270 1 730 IP 00 1260 1 280 1 360 1480 1 590 1 660 1 860 1 900 2 0 9 0 longueur mm dimensions hors tout (± 200 mm) largeur 1 230 mm 720 720 720 810 830 850 950 950 970 1 2 3 0 et masse (± 20 %) hauteur mm 1370 1 410 1 560 1 600 1 790 1 830 1 930 2 0 4 0 2 130 2 370 2370 1 000 1 180 1 520 2 040 2 400 2 820 3 3 2 0 4 060 4 980 5 980 masse totale 920 kg dimensions hors tout largeur longueur mm 1,650 1,660 1 680 1800 1.900 1 900 2 000 2 000 2 150 2 300 2300 mm 950 970 970 1020 1 100 1 100 1 150 1 150 1 250 1 350 1 350 (± 200 mm) et masse (± 20 %) hauteur mm 1750 1 710 1 860 2 0 5 0 2 300 2 300 2 3 5 0 2 350 2 500 2750 2 750

Encombrement

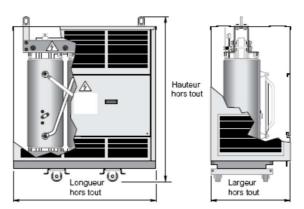
Trihal IP 00

masse totale

Trihal IP 31

1 350

1712


2 280

2 624

1 165

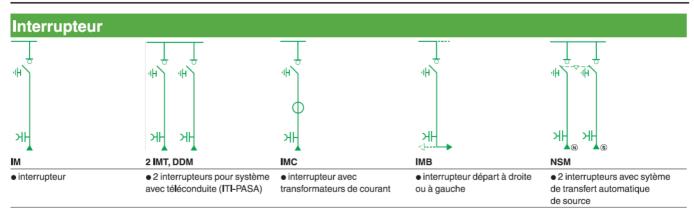
1 080

kg

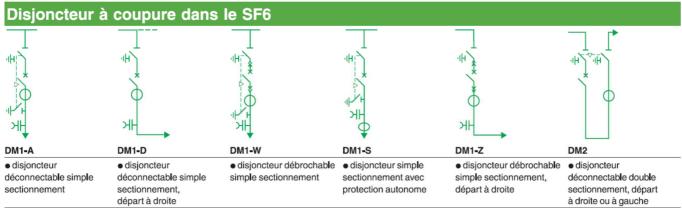
3 612

3112

5 350

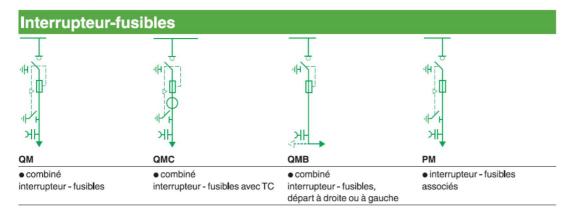

4 380

6 350


Courants de court-circuit au secondaire des transformateurs 20kV/690V:

Puissance (kVA)	800	1000	1250	1600	2000	2500
Icc (kA)	11	14	17.5	22.5	28	35


DRES2 : références des cellules SM6

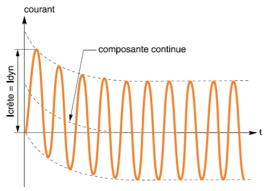

détails ▶ page B14

détails ▶ page B16

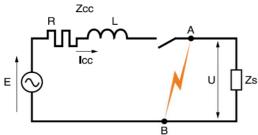
détails ▶ page B18

Dossier ressources 20-EQCIN Page 3/17

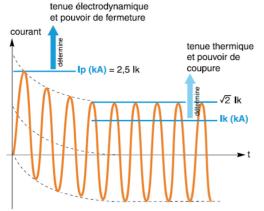
Caractéristiques générales Caractéristiques électriques et mécaniques


Caractéristi	ques électrique	es générales	;					
tension assignée		Ur	(kV)	7,2	12	17,5	24	
fréquence		f	(Hz)	50 ou				
niveau d'isolement	fréquence industrielle	isolement(1)	Ud	(kV eff.)	20	28	38	50
	50 Hz 1 mn	sectionnement(2)	Ud	(kV eff.)	23	32	45	60
	ondes de choc	isolement(1)	Up	(kV crête)	60	75	95	125
1,2/50 μs sectionnement		sectionnement(2)	Up	(kV crête)	70	85	110	145

Les valeurs ci-dessous sont données pour des températures de fonctionnement comprises entre - 5 °C et + 40 °C et pour une installation située à une altitude inférieure à 1000 m.


tension assignée	Ur (kV)	7,2				12				17,5			24		
courant de courte durée admissible (3)	lk (kA/1 s)	12,5	16	20 (4)	25	12,5	16	20 (4)	25	12,5	16	20 (4)	12,5	16	20 (4)
courant assigné du jeu de barres	Ir (A)	400 630 1250	630 1250	630 1250	630 1250	400 630 1250	630 1250	630 1250	630 1250	400 630 1250	630 1250	630 1250	400 630 1250	630 1250	630 1250
interrupteur (IM, IMC, IMT, DDM, NSM-câl	bles, NSM-barre	s, IMB)													
courant assigné	Ir (A)	400-6	30-800	(5)											
pouvoir de coupure maximum	Isc (kA)	égal a	u coura	ant assiç	gné										
pouvoir de coupure câbles à vide	Icc (A)	31,5													
pouvoir de fermeture - 50 Hz	Ima (kA)	31,25	40	50	62,5	31,25	40	50	62,5	31,25	40	50	31,25	40	50
disjoncteur à coupure dans le SF6 (DM1-	A, DM1-D, DM1-\	W)													
courant assigné	Ir (A)	400-6	30-125	0											
pouvoir de coupure maximum	Isc (kA)	25								20					
pouvoir de fermeture - 50 Hz	Ima (kA)	31 25	40	50	62.5	31 25	40	50	62.5	31 25	40	50	31 25	40	50

pouvoir de fermeture - 50 Hz	lma (kA)	31,25 40	50	62,5	31,25 40	50	62,5	31,25	40	50	31,25	40	50
disjoncteur à coupure dans le SF6 (DM1-A,	DM1-D, DM1-	W)											
courant assigné	Ir (A)	400-630-	1250										
pouvoir de coupure maximum	Isc (kA)	25						20					
pouvoir de fermeture - 50 Hz	lma (kA)	31,25 40	50	62,5	31,25 40	50	62,5	31,25	40	50	31,25	40	50
disjoncteur à coupure dans le SF6 (DM1-S,	DM2)												
courant assigné	Ir (A)	400-630											
pouvoir de coupure maximum	Isc (kA)	25						20					
pouvoir de fermeture - 50 Hz	lma (kA)	31,25 40	50	62,5	31,25 40	50	62,5	31,25	40	50	31,25	40	50
disjoncteur à coupure dans le SF6 (DM1-Z)													
courant assigné	Ir (A)	1250											
pouvoir de coupure maximum	Isc (kA)	25						20					
pouvoir de fermeture - 50 Hz	lma (kA)	31,25 40	50	62,5	31,25 40	50	62,5	31,25	40	50	31,25	40	50
disjoncteur à coupure dans le vide (DMV-A,	DMV-D)												
courant assigné	Ir (A)	630-1250)								-		
pouvoir de coupure maximum	Isc (kA)	25						20			-		
pouvoir de fermeture - 50 Hz	lma (kA)	31,25 40	50	62,5	31,25 40	50	62,5	31,25	40	50	-		
disjoncteur à coupure dans le vide (DMVL-A	A, DMVL-D, D	MV-S)											
courant assigné	Ir (A)	630											
pouvoir de coupure maximum	Isc (kA)	20 - 25 pc	our DMVL-I	D				20					
pouvoir de fermeture - 50 Hz	Ima (kA)	31,25 40	50	62,5	31,25 40	50	62,5	31,25	40	50	31,25	40	50
interrupteur fusible (QM, QMC, QMB, PM)													
courant assigné	Ir (A)	200											
pouvoir de coupure maximum	Isc (kA)	25						20 -25	pour l	PM			
pouvoir de fermeture - 50 Hz	lma (kA)	31,25 40	50	62,5	31,25 40	50	62,5	31,25	40	50	31,25	40	50
contacteur (CVM, CVM avec fusible)													
courant assigné	Ir (A)	400 - 250	avec fusib	le	-								
pouvoir de coupure maximum	Isc (kA)	6,3 - 25 a	vec fusible		-								
pouvoir de fermeture - 50 Hz	lma (kA)	31,25 40	50	62,5									
contacteur (CRM, CRM avec fusible)													
courant assigné	Ir (A)	400 - 250	avec fusib	le				-					
pouvoir de coupure maximum	Isc (kA)	10- 25 av	ec fusible		8-25 avec	fusible		-					
pouvoir de fermeture - 50 Hz	lma (kA)	31,25 40	50	62,5	31,25 40	50	62,5	-					


⁽¹⁾ Phase à phase, phase-terre.
(2) A travers la distance d'isolement.
(3) 3 phases.
(4) En 20 kA/3 s, nous consulter.
(5) En 800 A, nous consulter.

Forme du courant de court-circuit

Eléments déterminant un courant de court-circuit

Courant de court-circuit normalisé

Exemple (cellule HTA pour réseau 24 kV en 50 Hz):

- Courant de courte durée admissible :
 Ik = 12,5 kA 1 s
- valeur crête du courant de courte durée admissible : Ip = 2,5 lk = 31 kA (valeur de crête)

Courant de court-circuit

Caractéristiques d'un court-circuit

Le court-circuit résulte d'un défaut dans un réseau et se traduit par l'établissement d'un courant anormalement élevé qui comporte :

- une phase transitoire (d'asymétrie), avec une première crête dont la valeur dépend du réseau et de l'instant de début du court-circuit pendant la période (20 ms) du courant. Cette première crête crée les forces d'attraction électrodynamiques les plus importantes, notamment sur le jeu de barres, et détermine la tenue électrodynamique des équipements.
- une phase permanente (court-circuit établi), avec un courant élevé.
 La valeur efficace de ce courant provoque un échauffement très important qui détermine la tenue thermique des équipements. Le courant de court-circuit se réfère en général à cette valeur efficace en régime établi.

Puissance et courant de court-circuit

Le court-circuit peut être défini aussi par la puissance de court-circuit. C'est la puissance maximum que peut fournir le réseau à l'installation en défaut au point considéré pour une tension de service donnée.

Elle dépend de la configuration du réseau et de l'impédance des composants lignes, câbles, transformateurs, moteurs... en amont du court-circuit.

Exemple : court-circuit aux bornes aval A et B d'une cellule disjoncteur protégeant une charge Zs. La tension de la source amont est E, le courant de cour-circuit lcc dépend de l'impédance du circuits amont Zcc = $\sqrt{R^2 + (L\omega)^2}$ en général difficile à connaître.

Aussi, à la valeur de courant de court-circuit lcc, on fait correspondre conventionnellement, pour la tension de service U, la puissance de court-circuit (Scc), puissance apparente en MVA, définie par : $Scc = \sqrt{3}$ U lcc

Exemple : un courant de court-circuit de 25 kA sous une tension de service de 10 kV correspond à Scc = 1,732 x 10 x 25 = 433 MVA.

Caractéristiques des cellules HTA et de leur appareillage liées au court-circuit

Les cellules HTA - leurs composants actifs (parcourus par le courant) et leur appareillage - doivent pouvoir supporter, en leur point d'installation, le courant de court-circuit maximal du réseau. Il correspond au cas d'un défaut entre phases à proximité immédiate des bornes aval de l'appareillage de la cellule. Dans ces conditions le courant de court circuit est le plus important car il n'est limité que par les impédances amont. Deux grandeurs caractérisent les cellules HTA vis à vis des courts-circuits, en faisant référence à ce courant.

Courant de courte durée admissible assigné : Ik (kA) pendant tk (s)

C'est la valeur efficace (régime établi) du courant de court-circuit maximal. Ce courant, noté lk dans les normes CEI, a une valeur efficace (kA) définie pour une durée maximale, notée tk, en secondes (en général 1 ou 3 secondes). Il détermine :

- la tenue thermique que doivent supporter les matériels et les circuits principaux et de mise à la terre de la cellule.
- le pouvoir de coupure des appareils de protection, c'est-à-dire le courant de court-circuit qu'ils doivent interrompre.

La CEI retient pour ce courant les valeurs suivantes :

8 - 12,5 - 16 - 20 - 25 - 31,5 - 40 kA pendant 1 ou 3 secondes

Valeur crête du courant de courte durée admissible maximale : Ip (kA)

C'est la valeur de la première crête (phase transitoire) du courant lk précédent. Ce courant, noté lp dans les normes CEI, est défini en kA. Il détermine :

- la tenue électrodynamique des jeux de barres en donnant la mesure de la force électrodynamique maximale auxquels ils seront soumis.
- le pouvoir de fermeture des appareils de protection, c'est à dire leur aptitude à se fermer en présence du courant de court-circuit, malgré les forces électrodynamiques de répulsion.

La valeur crête du courant maximal (Ip) se déduit de la valeur du courant de courtedurée admissible (Ik) selon les conditions des normes :

- Ip = 2,5 x Ik en 50 Hz (CEI)
- Ip = 2,6 x Ik en 60 Hz (CEI)
- Ip = 2,7 x lk en 60 Hz (ANSI).

Nombre de phases

L'appareillage HTA est de type tripolaire, avec une maœuvre actionnant simultanément les 3 phases.

Tableaux à isolement dans l'air - SM6

Fusibles

Protection des transformateurs

- Le calibre des fusibles pour la protection des cellules SM6 telles que PM, QM, QMB et QMC dépend, entre autres, des critères suivants :
- o tension de service,
- o puissance du transformateur,
- o technologie des fusibles (constructeur).
- Il est possible d'installer différents types de fusibles MT avec percuteur :
- o fusibles de type Soléfuse conformes à la norme UTE NCF 64.210,
- o fusibles de type Fusarc CF conformes à la recommandation CEI 60.282.1 et de dimensions correspondant à la norme DIN 43.625.
- Pour les combinés interrupteur-fusibles de type QM, QMB, QMC et pour tous les autres types de fusibles, nous consulter.

Exemple: pour la protection d'un transformateur de 400 kVA-10 kV, choisir, soit des fusibles Soléfuse de calibre 43 A soit des fusibles Fusarc CF de calibre 50 A.

Tableau de choix des fusibles

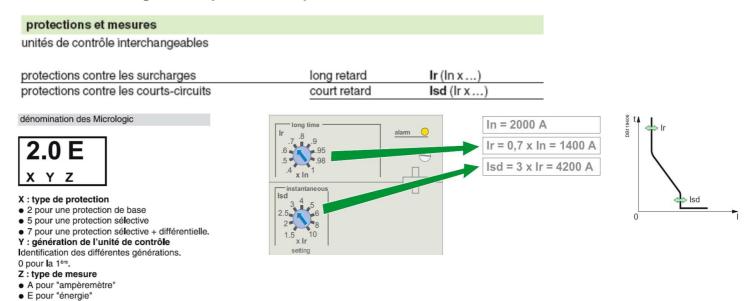
Le code couleur est lié à la tension assignée des fusibles

Calibre en A - pas de surcharge entre -5 °C < t < 40 °C, ≤1000 m altitude.

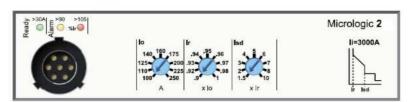
⚠ Veuillez nous consulter pour des surcharges et fonctionnement au-delà de 40 °C avec des transformateurs France Transfo de type immergé dans l'huile.

Type de	Tension	Puis	sance o	lu trans	format	eur (kV	A)												Tension
fusib l e	de service (kV)	25	50	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	assignée (kV)
Soléfuse (normes UTE N	FC 13	.100, 64	.210)															
	10	6,3	6,3	16	16	16	31,5	31,5	43	43	43	63							24
	15	6,3	6,3	16	16	16	16	16	31,5	31,5	43	43	43	63					
	20	6,3	6,3	6,3	6,3	16	16	16	16	31,5	31,5	43	43	43	63				
Soléfuse (cas général, n	orme l	JTE NF	C 13.20	0)														
	3,3	16	16	31,5	31,5	31,5	63	63	100	100									7,2
	5,5	6,3	16	16	31,5	31,5	63	63	63	80	80	100	125						
	6,6	6,3	16	16	16	31,5	31,5	43	43	63	80	100	125	125					
	10	6,3	6,3	16	16	16	31,5	31,5	31,5	43	43	63	80	80	100				12
	13,8	6,3	6,3	6,3	16	16	16	16	31,5	31,5	31,5	43	63	63	80				17,5
	15	6,3	6,3	16	16	16	16	16	31,5	31,5	31,5	43	43	63	80				
	20	6,3	6,3	6,3	6,3	16	16	16	16	31,5	31,5	31,5	43	43	63				24
	22	6,3	6,3	6,3	6,3	16	16	16	16	16	31,5	31,5	31,5	43	43	63			
Fusarc CF	et SIBA(1) (cas	s géné	ral pou	r cellule	es QM,	QMB e	QMC	suivan	la nor	me CEI	62271	-105)							
	3,3	16	25	40	50	50	80	80	100	125	125	160(1)	200(1)						7,2
	5	10	16	31,5	40	40	50	63	80	80	125	125	160(1)						
	5,5	10	16	31,5	31,5	40	50	50	63	80	100	125	125	160(1)	160(1)				
	6	10	16	25	31,5	40	50	50	63	80	80	125	125	160(1)	160(1)				
	6,6	10	16	25	31,5	40	50	50	63	80	80	100	125	125	160(1)				_
	10	6,3	10	16	20	25	31,5	40	50	50	63	80	80	100	100	125(1)	200(1)		12
	11	6,3	10	16	20	25	25	31,5	40	50	50	63	80	100	100	125(1)	160(1)		_
	13,8	6,3	10	16	16	20	25	31,5	31,5	40	50	50	63	80	80	100(1)	125(1)	125(1)	17,5
	15	6,3	10	10	16	16	20	25	31,5	40	50	50	63	80	80	100(1)	125(1)	125(1)	
	20	6,3	6,3	10	10	16	16	25	25	31,5	40	40	50	50	63	80	100(1)	125(1)	24
	22	6,3	6,3	10	10	10	16	20	25	25	31,5	40	40	50	50	80	80	100(1)	

(1) Fusibles SIBA


	es
	금
	ij
	7.5
ns	té
.0	ag
S	ja
ō	t
4	(II)

Caractéristiques des disjoncteurs et interrupteurs NW08àNW63


	Caractéristiques communes Nembre de poles Institute de poles Institute displace d'Isolement (V) ul Tension de neue aux chocs (RV) ulmp		Choix des capteurs Calibre du capteur (A) Reglage du seuil Ir (A)	pteurs 250 ⁽¹⁾ A) 100 A) a 250	400 160 à 400	630 800 250 320 a 630 a 800	1000 400 à 1000	1250 1600 500 630 a 1250 a 1600	2000 800 à 2000	2500 3200 1000 1250 a 2500 a 3200	4000 1600 à 4000	5000 6300 2000 2500 a 5000 a 6300		
	0	Ue 690/150 IEC 60947-2	(1) Disjoncteur NW02 nous consulter. NW08 NW10 NW12 NW16	2 nous consulter. NW12 NW16	NW20	0.		NW25	NW25 NW32 NW40		NW40b N	NW40b NW50 NW63	[v]	
	Disjoncteurs suivant IEC 60947-2 Courant assigne (A) Calibre to 4 ^{em} pole (A) Calibre des canteurs (A)	à 40 °C / 50 °C (1)	800 1000 800 1000 400 400	1250 1600 1250 1600 630 800 a 1600		2000 2000 1000 à 2000		2500 2500 1250	3200 4000 3200 4000 1600 2000	4000 4000 2000 à 4000	4000 4000 5000 2900	5000 6300 5000 6300 2500 3200		
				20	10		L1(3)	a 2500 H10 H1	_	3 H10		0000 a 6300		
	Pouvoir de coupure ultime (KA eff) V CA 50/60 Hz	220/415/440 V 525 V 690 V	42 65 42 65 42 65	100 150 85 130 85 100	. 65 . 65	100 150 85 130 85 100	150 130 -	65 65 65	100 150 85 130 85 100		100 100 100 100 100 100 100 100 100 100	150 130 100		
	Pouvoir assigné de coupure de service (KA eff)	1150 V % Icu	%				- 20	100%	*	20	100%		DR	
	Categorie d'emploi Courant assigné de courte durée admissible (kA eff) Icw (CA 50/60 Hz	18	42 65 22 36		50 65 50 85	85 65	30 50	65 65		50	100 10	0 0	ES	
	Protection instantanee integrée (kA crête ±10 %) Pouvoir assigne de fermeture (kA crête) V CA 50/60 Hz.	220/415/440 V 525 V 690 V		190 80 220 330 187 286 187 220		190 150 220 330 187 286 187 220	330 286 220		190 150 220 330 187 286 187 220			270 230 286 220	S6 : d	
	Temps de coupure (ms) de l'ordre de déclenchement à l'extinction de l'arc	1150 V de l'arc	25 25	25 10	105 - 25 25	25 25	. 105 10 25	25	25 25	105	25 25		isjo	
	Temps de fermeture (ms) Disioncteurs suivant NEMA AB1		< 70		or >			< 70			< 80		on	
	Pouvoir de coupure (kA) V CA 50/60 Hz	240/480 V 600 V	42 65 42 65	100 150 85 100	- 65	100 150 85 100	150 -	65	100 150 85 100		100 100 100 100 100 100 100 100 100 100	150 100	cte	
	Disjoncteurs sans protection	244		ı		ı	ı		ı			ı	ur	
	Declenchement par declencheur shunt survant IEC 60 Type de disjoncteur	1947-2	НА	HF ⁽³⁾	H	HF®		НА	HF 39		HA		. V	
	Pouvoir de coupure ultime Icu (KA eff) V CA 50/60 Hz Icu	220690 V	50	85	50	85		55	85		85		/la	
	Courant assigné de courte durée admissible (kA eff)	18	20 20	85	20 20	85		55	85		85		st	
		38	36		36	- 12		- 22	- 75		. 85		erp	
	n maxi de la prol A50/60 Hz	ection de court-circuit : 350 ms (4)	105	187	105	187		121	187		187		oa	
	Ann		NW08/NW10/NW12/NW16	W12/NW16	6	NW20			NW25/NW32/NW40	1W40		NW40b/NW50/NW6	IU	
			NA HA	生	HA10	HA HF		HA10 HA	生	HA10	П			
	Pouvoir assigné de fermeture (kA crête) Icm Catégorie AC23A/AC3 V CA 50/60 Hz	220690 V 1150 V		187	105					105	187		VV	
	Courant assigné de courte durée admissible (kA eff) Icw Catégorie AC23A/AC3 V CA 50/60 Hz	38	42 50	85	50	50 85		50 55	85	50	85		٧	
	Interrupteurs de mise à la terre		8	8	2				2	8	8			
	Pouvoir de fermeture (kA crête) Courant assigné de courte durée admissible (kA eff) Icw	135 1 s	60 Hz											
	Purabilité mécanique et électrique suivant	3s ivant IEC 60947-2/3 à In/Ie	50 Hz											
	Durée de vie Mécanique Avec maintenance		25			20					10			
	1000		12,5	П		10			1		2	o		
	Type de disjoncteur Courant assigné		N1/H1/H2 L1 800/1000/1250/1600	H10		H1/H2 H3	2	H10 H1/H2	H1/H2 H3	H10	H1 H2	H2 00/6300		
. suec raccordament mises arrière verticales	Electrique Sans maintenance	440 V ⁽⁵⁾ 690 V	10 3			8 2	en en		1,25		1,5	1,5		
ableaux de déclassement en température pour les	1-1-000	1150 V	2 ,	0,5		2 .	n ,		67'1	0,5	n' .			
pes de raccordement. porter aux courbes de limitation dans le chapitre	Type de disjoncteur ou d'interrupteur		H1/H2/NA/HA/HF			H1/H2/H3/HA/HF	/HF	H1	H1/H2/H3/HA/HF		H1/H2/HA	1		
ristiques complémentaires". 26 d'un déclencheur sous courant de fermeture 2018	ectrique Sans maintenance	440 V ⁽⁵⁾ 690 V	10	8		8 9		5 25	000000		1,5	00000		
otection externe doit respecter les contraintes	sjoncteur ou d'interrupteur		I/H2/NA/H/			H1/H2/H3/H/	/HF	0,1			2.			
des admissibles par le disjoncteur (nous consulter). dication pour le SDE ou le bouton reset d'une	Courant d'emploi assigné le (A) Puissance moteur				1600 670 à 900	2000 900 à 1150								
o sur denar. Se sur de la commande des moteurs pour démarrace direct. Ité à la commande des moteurs pour démarrace direct.		440 V ⁽⁶⁾ (kW) 690 V (kW)	400 à 500 500 ≥ ≤ 800 800 ≥	500 à 630 500 à 800 800 à 1000 1000 à 125	800 à 1000 0 1250 à 1600	1000 à 1300 1600 à 2000								
isation en régime IT des NW08 à NW20 H1 est limitée nsion du réseau de 500 V.	Cycles F/O x 1000 Electrique Sans maintenance IEC 60947-3 Annexe M/IEC 60947-4-1	440/690 V (6)		_										

DRES7 : unités de contrôle Micrologic

Partie A: Micrologic 2.0 E pour Masterpact NW

Partie B: Micrologic 2 pour Compact NSX avec la figure ci-après qui correspond au NSX250 pour I_{0=100A} Micrologic 2

Micrologic 2											
calibres (A)	In à 40 °C (1)		40	100	160	250	400	630			
disjoncteur	Compact NSX100		•	-	-	-	-	-			
	Compact NSX160		•			Ψ.	-	-			
	Compact NSX250						-	-			
	Compact NSX400		-	-	-			-			
	Compact NSX630		-	-	+						
Long retard											
euil (A)		lo	valeur	selon ca	libre du d	éclenche	ur (In) et	cran du d	commuta	teur	
léclenchement entre	ln = 40 A	lo =	18	18	20	23	25	28	32	36	40
,05 et 1,20 lr	In = 100 A	lo =	40	45	50	55	63	70	80	90	100
	In = 160 A	lo =	63	70	80	90	100	110	125	150	160
	In = 250 A (NSX250)	lo =	100	110	125	140	160	175	200	225	250
	In = 250 A (NSX400)	lo =	70	100	125	140	160	175	200	225	250
	In = 400 A	lo=	160	180	200	230	250	280	320	360	400
	In = 630 A	lo=	250	280	320	350	400	450	500	570	630
	Ir = lo x		réglab	le fin de 0	0.9 à 1 en	9 crans (0.9 - 0.92	2 - 0.93 -	0.94 - 0.9	95 - 0.96	- 0.97 -
						leur de 10		,	,	,	,
emporisation (s)	tr		non ré	glable	•						
récision 0 à - 20 %		1.5 x lr	400								
		6 x lr	16								
		7.2 x lr	11								
némoire thermique			20 min	utes ava	nt et aprè	s déclend	chement				
Court retard à ter	mporisation fixe										
seuil (A)	Isd = Ir x		1,5	2	3	4	5	6	7	8	10
orécision ±10 %											
emporisation (ms)	tsd		non ré	glable							
	temps de non déclenc	hement	20								
	temps maximal de cou	ipure	80								
Instantanée											
seuil (A)	li non réglable		600	1500	2400	3000	4800	6900			
orécision ±15 %	temps de non déclenc	hement	10 ms								
trice and a second seco	temps maximum de co		0.00	pour I > 1	1 5 li						

⁽¹⁾ En cas d'utilisation des disjoncteurs à température élevée, le réglage des Micrologic doit tenir compte des limites thermiques de l'appareil : voir tableau de déclassemen

DRES8 : disjoncteur Compact NSX

Schneider

Dossier ressources

Disjoncteurs et interrupteurs jusqu'à 6300 A

tensions assignées			commanda	manuelle	narmaneton						
d'isolement (V)		800		1101100110	rotative stanc	par IIIanetoni rotative standard ou prolongée					
de tenue aux chocs (kV) d'utilisation (V)	Uimp Ue		versions	électrique	avec télécommande	ımande					
aplitude au sectionnement catégorie d'emploi degré de pollution	IEC/EN 60947-2	947-2 oui		débrochable	sur socle sur châssis						
Disjoncteurs			SX100		0	NSX250		3X400		တ်	
niveaux de pouvoir de coupure caractéristiques suivant CEMEC 60947-2	60947-2		z	S	S H	E Z	S	z	S	Z L	S I
courant assigné (A)	In 40°C		100	160		250		400		630	
nombre de pôles pouvoir de coupure (kA eff.)			2 (3), 3, 4	2 (3)	2 (3), 3, 4	2 (3), 3, 4		3,4		3, 4	
المحمدة محمده ما المحمدة المحم	Icu CA 50/60 Hz	7 220/240 V	85 90 100	120 150	90 100 120	06	100 120 150	85	100 120 150	40	100 120
			50	100 150	70	36 50	100	50	100	36	
		440 V	20	90 130		35 50	06		06	30	90
		500 V	36	65 70	20	30 36	65	30	65	25	
		525 V 660/690 V	8 10 10	15 20 8	35 35 40 10 10 15	20 8 10 10	35 40 50 10 15 20	10 10 20	35 40 50 20 25 35	10 22	35 40
pouvoir de coupure de service (kA eff.)	(:										
	lcs CA 50/60 Hz		06	120	100	85 90	120	85	120		
		380/415 V	50	100 150	20	36 50	100	50	100	36	70 100
		440 V	35 50 65	90 130	20 02	30		30 42 65		0 30 42	Т
		525 V	11 35 35	40	35 35 40	35	40	1 8	2 2	10	11 12
durabilità (ovolas E.0)	mácanicus	V 069/099		15 20	10	8	15	10 10 10	12	15000	10 12
(2 1000) (2) (2000)	électrique	440 V In/2	20000	20000	00	20000		12000		8000	
		u .	30000	10000	00	10000		0009		4000	
		N INZ	10000	7500	8.0	5000		3000		2000	
caractéristiques suivant NEMA-AB1											
pouvoir de coupure (kA eff.)	CA 50/60 Hz	z 240 V 480 V	35 50 65		50 65 90	130 35 50 65		30 42 65		0 40 85	100 120
		V 009		40 50	35	20	40	20	40		35 40
caractéristiques suivant UL508											
pouvoir de coupure (KA eff.)	CA 50/60 Hz		85 85 85		50 65 -	- 85 85 85		85 85 85 35 50 65		35 85	82
		V 000	10		Т	15 15		20	. 0	Т	20 -
protection et mesure											
protection contre courts-circuits magnétique seul	magnétique seul		-			-					
protection contra and an area of the	électronique		-	-		•				-	
	avec protect	avec protection du neutre(Off-0.5-1-OSN) (1)		-		-					
	avec protection de terre	ion de terre	•	-		•				-	
	avec sélectivité ZSI (2)	vité ZSI (2)	•	•		-		•		•	
affichage / mesure I, U, f, P, E, THD / mesure du courant coupé	ure du courant coupé		•	•		•				•	
options	affichage Power Met	Meter sur porte	•	•		•				•	
	ande a l'exploration			• •		-					
	compleurs historial les et alarme	30	• •			-				• •	
	com de mesure	Sal	• •	• •							
	com états de l'appareil / commande	reil / commande	•	•		-				-	
protection différentielle	par bloc Vigi		•	•		•				•	
otto mobaccon / moitollotoni	par relais Vigirex ass	associé	-	-		-				-	
dimensions (mm)	five prises agant	2/3P	105 v 161 v 86	105	v 161 v 86	105 v 161 v 86		140 v 225 v 110		140 v 225	v 110
LXHXP	like, prises avain	4P	140 x 161 x 86	140)	140 x 161 x 86	140 × 161 × 86		185 x 255 x 110		185 x 255 x 110	×110
masses (kg)	fixe, prises avant	2/3P 4P	2,05	2,2		4,0,0		6,05		6,2 8,13	
raccordements plages épanouisseurs	pas polaire	sans/avec épanouisseurs	35/45 mm	35/4	35/45 mm	35/45 mm		45/52,5 mm		45/52,5 mm	E
								100000000000000000000000000000000000000			

Compact NSX400/6

20-EQCIN Page 9/17

DRES9 : caractéristiques des transformateurs 20 kV / 410 V et de leurs disjoncteurs associés

Hypothèses de calcul:

- la puissance de court-circuit du réseau amont est indéfinie
 les transformateurs sont des transformateurs 20 kV / 410 V
- entre chaque transformateur et le disjoncteur correspondant, il y a 5 m de câbles
- entre un disjoncteur de source et un disjoncteur de départ, il y a 1 m de barres
 le matériel est installé en tableau à 40 °C de température ambiante.

transfo	mateur			pdc mini	disjoncteur de source	pdc mini					
P (kVA)	In (A)	Ucc (%)	Icc (kA)	source	•	départ	≤ 100	160	250	400	630
1 transf	ormateur			(kA)		(kA)					
50	70	4	2	2	NSX100F TM-D / Micrologic	2	NSX100F				
100	141	4	4	4	NSX160F TM-D / Micrologic	4	NSX100F	NSX160F			
160	225	4	6	6	NSX250F TM-D / Micrologic	6	NSX100F	NSX160F	NSX250F		
250	352	4	9	9	NSX400F Micrologic	9	NSX100F	NSX160F	NSX250F	NSX400F	
400	563	4	14	14	NSX630F Micrologic	14	NSX100F	NSX160F	NSX250F	NSX400F	NSX630F
630	887	4	22	22	NS 1000 NT/MTZ1 10H1	22	NSX100F	NSX160F	NSX250F	NSX400F	NSX630F
					NW/MTZ2 10N1 Micrologic						
800	1127	6	19	19	NS 1250 NT/MTZ1 12H1 NW/MTZ2 12N1 Micrologic	19	NSX100F	NSX160F	NSX250F	NSX400F	NSX630F
1000	1408	6	23	23	NS 1600 NT/MTZ1 16H1 NW/MTZ2 16N1 Micrologic	23	NSX100F	NSX160F	NSX250F	NSX400F	NSX630F
1250	1760	6	29	29	NW/MTZ2 20 H1 Micrologic	29	NSX100F	NSX160F	NSX250F	NSX400F	NSX630F
1600	2253	6	38	38	NW/MTZ2 25 H1 Micrologic	38	NSX100N	NSX160N	NSX250N	NSX400N	NSX630N
2000	2816	6	47	47	NW/MTZ2 32 H1 Micrologic	47	NSX100N	NSX160N	NSX250N	NSX400N	NSX630N
2500	3521	6	59	59	NW/MTZ2 40 H1 Micrologic	59	NSX100H	NSX160H	NSX250H	NSX400H	NSX630H
2 transf	ormateur	S									
50	70	4	2	2	NSX100F TM-D / Micrologic	4	NSX100F	NSX160F			
100	141	4	4	4	NSX160F TM-D / Micrologic	7	NSX100F	NSX160F	NSX250F		
160	225	4	6	6	NSX250F TM-D / Micrologic	11	NSX100F	NSX160F	NSX250F	NSX400F	
250	352	4	9	9	NSX400F Micrologic	18	NSX100F	NSX160F	NSX250F	NSX400F	NSX630F
400	563	4	14	14	NSX630F Micrologic	28	NSX100F	NSX160F	NSX250F	NSX400F	NSX630F
630	887	4	22	22	NS 1000 NT/MTZ1 10H1 NW/MTZ2 10N1 Micrologic	44	NSX100N	NSX160N	NSX250N	NSX400N	NSX630N
800	1127	6	19	19	NS 1250 NT/MTZ1 12H1 NW/MTZ2 12N1 Micrologic	38	NSX100N	NSX160N	NSX250N	NSX400N	NSX630N
1000	1408	6	23	23	NS 1600 NT/MTZ1 16H1 NW/MTZ2 16N1 Micrologic	47	NSX100N	NSX160N	NSX250N	NSX400N	NSX630N
1250	1760	6	29	29	NW/MTZ2 20 H1 Micrologic	59	NSX100H	NSX160H	NSX250H	NSX400H	NSX630H
1600	2253	6	38	38	NW/MTZ2 25 H1 Micrologic	75	NSX100S	NSX160S	NSX250S	NSX400S	NSX630S
2000	2816	6	47	47	NW/MTZ2 32 H1 Micrologic	94	NSX100S	NSX160S	NSX250S	NSX400S	NSX630S
2500	3521	6	59	59	NW/MTZ2 40 H1 Micrologic	117	NSX100L	NSX160L	NSX250L	NSX400L	NSX630L
3 transf	ormateur	S				1	1	1	1	1	1
50	70	4	2	4	NSX100F TM-D / Micrologic	5	NSX100F	NSX160F	NSX250F		
100	141	4	4	7	NSX160F TM-D / Micrologic	11	NSX100F	NSX160F	NSX250F	NSX400F	
160	225	4	6	11	NSX250F TM-D / Micrologic	17	NSX100F	NSX160F	NSX250F	NSX400F	NSX630F
250	352	4	9	18	NSX400F Micrologic	26	NSX100F	NSX160F	NSX250F	NSX400F	NSX630F
400	563	4	14	28	NSX630F Micrologic	42	NSX100N	NSX160N	NSX250N	NSX400N	NSX630N
630	887	4	22	44	NS 1000 NT/MTZ1 10H1 NW/MTZ2 10N1 Micrologic	67	NSX100H	NSX160H	NSX250H	NSX400H	NSX630H
800	1127	6	19	38	NS 1250 NT/MTZ1 12H1 NW/MTZ2 12N1 Micrologic	56	NSX100H	NSX160H	NSX250H	NSX400H	NSX630H
1000	1408	6	23	47	NS 1600 NT/MTZ1 16H1 NW/MTZ2 16N1 Micrologic	70	NSX100H	NSX160H	NSX250H	NSX400H	NSX630H
1250	1760	6	29	59	NW/MTZ2 16N1 Micrologic	88	NSX100S	NSX160S	NSX250S	NSX400S	NSX630S
1600	2253	6	38	75	NW/MTZ2 25 H2 Micrologic	113	NSX1005	NSX160S	NSX250L	NSX4005	NSX630L
2000	2816	6	47	94	NW/MTZ2 32 H2 Micrologic	141	NSX100L	NSX160L	NSX250L	NSX400L	NSX630L
2000	2010	U	47	34	INVANIATE SE LIS MICHOROGIC	141	NOVIOUL	NOVIOUL	NONZOUL	1437400L	NONUL

Page 10/17 Dossier ressources 20-EQCIN

Les tableaux ci-contre permettent de déterminer la section des conducteurs de phase d'un circuit.

Ils ne sont utilisables que pour des canalisations non enterrées et protégées par disjoncteur.

Pour obtenir la section des conducteurs de phase, il faut :

- déterminer une lettre de sélection qui
- dépend du conducteur utilisé et de son mode de pose
- déterminer un cœfficient K qui caractérise l'influence des différentes conditions d'installation.

Ce coefficient K s'obtient en multipliant les facteurs de correction, K1, K2, K3, Kn et Ks:

- le facteur de correction K1 prend en compte le mode de pose
- le facteur de correction K2 prend en compte l'influence mutuelle des circuits placés côte à côte
- le facteur de correction K3 prend en compte la température ambiante et la nature de l'isolant
- le facteur de correction du neutre chargé
 Kn
- le facteur de correction dit de symétrie Ks.

Lettre de sélection

type d'éléments conducteurs	mode de pose	lettre de sélection
conducteurs et câbles multiconducteurs	sous conduit, profilé ou goulotte, en apparent ou encastré sous vide de construction, faux plafond sous caniveau, moulures, plinthes, chambranles	В
	en apparent contre mur ou plafond sur chemin de câbles ou tablettes non perforées	С
câbles multiconducteurs	 sur échelles, corbeaux, chemin de câbles perforé fixés en apparent, espacés de la paroi câbles suspendus 	E
câbles monoconducteurs	sur échelles, corbeaux, chemin de câbles perforé fixés en apparent, espacés de la paroi câbles suspendus	F

Facteur de correction K1

lettre de sélection	cas d'installation	K1
В	câbles dans des produits encastrés directement dans des matériaux thermiquement isolants	0,70
	• conduits encastrés dans des matériaux thermiquement isolants	0,77
	câbles multiconducteurs	0,90
	vides de construction et caniveaux	0,95
С	pose sous plafond	0,95
B. C. E. F	autres cas	1

Facteur de correction K2

lettre de sélection	disposition des câbles jointifs					on K2 ou de		es m	ultico	onduc	teurs	3	
		1	2	3	4	5	6	7	8	9	12	16	20
B, C, F	encastrés ou noyés dans les parois	1,00	0,80	0,70	0,65	0,60	0,55	0,55	0,50	0,50	0,45	0,40	0,40
С	simple couche sur les murs ou les planchers ou tablettes non perforées	1,00	0,85	0,79	0,75	0,73	0,72	0,72	0,71	0,70	de re	éducti	
	simple couche au plafond	1,00	0,85	0,76	0,72	0,69	0,67	0,66	0,65	0,64	pour	plus	de
E, F	simple couche sur des tablettes horizontales perforées ou sur tablettes verticales	1,00	0,88	0,82	0,77	0,75	0,73	0,73	0,72	0,72	9 câl	bles.	
	simple couche sur des échelles à câbles, corbeaux, etc.	1,00	0,88	0,82	0,80	0,80	0,79	0,79	0,78	0,78			

Lorsque les câbles sont disposés en plusieurs couches, appliquer en plus un facteur de correction de :

- 0,80 pour deux couches
- 0,73 pour trois couches
- 0,70 pour quatre ou cinq couches.

Facteur de correction K3

températures	isolation		
ambiantes (°C)	élastomère (caoutchouc)	polychlorure de vinyle (PVC)	polyéthylène réticulé (PR) butyle, éthylène, propylène (EPR)
10	1,29	1,22	1,15
15	1,22	1,17	1,12
20	1,15	1,12	1,08
25	1,07	1,06	1,04
30	1,00	1,00	1,00
35	0,93	0,94	0,96
40	0,82	0,87	0,91
45	0,71	0,79	0,87
50	0,58	0,71	0,82
55	1	0,61	0,76
60	-	0,50	0.71

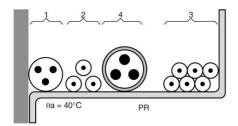
Facteur de correction Kn (conducteur Neutre chargé) (selon la norme NF C 15-100 § 523.5.2)

- Kn = 0,84
- Kn = 1,45
- ▶ Détermination de la section d'un conducteur Neutre chargé ▶ page A47.

Facteur de correction dit de symétrie Ks (selon la norme NF C 15-105 § B.5.2 et le nombre de câbles en parallèle)

- Ks = 1 pour 2 et 4 câbles par phase avec le respect de la symétrie
- Ks = 0,8 pour 2, 3 et 4 câbles par phase si non respect de la symétrie.

Dossier ressources 20-EQCIN Page 11/17


Exemple d'un circuit à calculer selon la méthode NF C 15-100 § 523.7

Un câble polyéthylène réticulé (PR) triphasé + neutre (4° circuit à calculer) est tiré sur un chemin de câbles perforé, jointivement avec 3 autres circuits constitués:

- d'un câble triphasé (1er circuit)
- de 3 câbles unipolaires (2e circuit)
- de 6 cables unipolaires (3° circuit): ce circuit est constitué de 2 conducteurs par phase.

Il y aura donc 5 regroupements triphasés. La température ambiante est de 40 °C et le câble véhicule 58 ampères par phase.

On considère que le neutre du circuit 4 est chargé.

La lettre de sélection donnée par le tableau correspondant est E.

Les facteurs de correction K1, K2, K3 donnés par les tableaux correspondants sont respectivement :

- K1 = 1
- K2 = 0.75
- K3 = 0.91

Le facteur de correction neutre chargé est :

• Kn = 0.84.

Le coefficient total $K = K1 \times K2 \times K3 \times Kn$ est donc $1 \times 0.75 \times 0.91 \times 0.84$ soit :

• K = 0,57.

Détermination de la section

On choisira une valeur normalisée de In juste supérieure à 58 A, soit In = 63 A.

Le courant admissible dans la canalisation est Iz=63~A. L'intensité fictive l'z prenant en compte le coefficient K est I'z=63/0,57=110,5~A.

En se plaçant sur la ligne correspondant à la lettre de sélection E, dans la colonne PR3, on choisit la valeur immédiatement supérieure à 110,5 A, soit, ici :

- pour une section cuivre 127 A, ce qui correspond à une section de 25 mm²,
- pour une section aluminium 120 A, ce qui correspond à une section de 35 mm².

Détermination de la section d'un conducteur neutre chargé

Les courants harmoniques de rang 3 et multiples de 3 circulant dans les conducteurs de phases d'un circuit triphasé s'additionnent dans le conducteur neutre et le surchargent.

Pour les circuits concernés par la présence de ces harmoniques, pour les sections de phase > 16 mm² en cuivre ou 25 mm² en aluminium, il faut déterminer la section des conducteurs de la manière suivante, en fonction du taux d'harmoniques en courant de rang 3 et multiples de 3 dans les conducteurs de phases :

• taux (ih3) < 15%:

Le conducteur neutre n'est pas considéré comme chargé. La section du conducteur neutre (Sn) égale à celle nécessaire pour les conducteurs de phases (Sph). Aucun coefficient lié aux harmoniques n'est appliqué : Sn = Sph

• taux (ih3) compris entre 15% et 33% : Le conducteur neutre est considéré comme chargé, sans devoir être surdimensionné par rapport aux phases.

Détermination de la section minimale

Connaissant l'z et K (l'z est le courant équivalent au courant véhiculé par la canalisation : l'z = Iz/K), le tableau ci-après indique la section à retenir.

		isolant	et nom	bre de c	onducte	urs cha	rgés (3 c	u 2)		
		caouto ou PV	houc	<u></u>			u éthylè		70V	
lettre de	В	PVC3	PVC2		PR3		PR2			
sélection	С		PVC3		PVC2	PR3		PR2		
	E			PVC3		PVC2	PR3		PR2	
	F				PVC3		PVC2	PR3		PR2
section	1,5	15,5	17,5	18,5	19,5	22	23	24	26	
cuivre	2,5	21	24	25	27	30	31	33	36	
(mm ²)	4	28	32	34	36	40	42	45	49	
None of	6	36	41	43	48	51	54	58	63	
	10	50	57	60	63	70	75	80	86	
	16	68	76	80	85	94	100	107	115	
	25	89	96	101	112	119	127	138	149	161
	35	110	119	126	138	147	158	169	185	200
	50	134	144	153	168	179	192	207	225	242
	70	171	184	196	213	229	246	268	289	310
	95	207	223	238	258	278	298	328	352	377
	120	239	259	276	299	322	346	382	410	437
	150		299	319	344	371	395	441	473	504
	185		341	364	392	424	450	506	542	575
	240		403	430	461	500	538	599	641	679
	300		464	497	530	576	621	693	741	783
	400					656	754	825		940
	500					749	868	946		1 083
	630					855	1 005	1 088		1 254
section	2,5	16,5	18,5	19,5	21	23	25	26	28	
aluminium	4	22	25	26	28	31	33	35	38	
(mm ²)	6	28	32	33	36	39	43	45	49	
35	10	39	44	46	49	54	58	62	67	
	16	53	59	61	66	73	77	84	91	
	25	70	73	78	83	90	97	101	108	121
	35	86	90	96	103	112	120	126	135	150
	50	104	110	117	125	136	146	154	164	184
	70	133	140	150	160	174	187	198	211	237
	95	161	170	183	195	211	227	241	257	289
	120	186	197	212	226	245	263	280	300	337
	150		227	245	261	283	304	324	346	389
	185		259	280	298	323	347	371	397	447
	240		305	330	352	382	409	439	470	530
	300		351	381	406	440	471	508	543	613
	400					526	600	663		740
	500					610	694	770		856
	630					711	808	899		996

Prévoir une section du conducteur neutre (Sn) égale à celle nécessaire pour les conducteurs de phases (Sph). Mais un facteur de réduction de courant admissible de 0,84 doit être pris en compte pour l'ensemble des conducteurs :

Sn = Sph = Spho x 1/0,84 (facteur de dimensionnement pour l'ensemble des conducteurs, par rapport à la section Spho calculée).

• taux (ih3) > 33% :

Le conducteur est considéré comme chargé et doit être surdimensionné pour un courant d'emploi égal à 1,45/0,84 fois le courant d'emploi dans la phase, soit environ 1,73 fois le courant calculé.

Selon le type de câble utilisé :

o câbles multipolaires : la section du conducteur neutre (Sn) est égale à celle nécessaire pour la section des conducteur de phases (Sph) et un facteur de correction de 1,45/0,84 doit être pris en compte pour l'ensemble des conducteurs. Sn = Sph = Spho x 1,45/0,84 (facteur de dimensionnement pour l'ensemble des conducteurs, par rapport à la section Spho calculée).

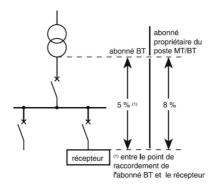
 \circ câbles unipolaires : le conducteur neutre doit avoir une section supérieure à celle des conducteurs de phases.

La section du conducteur neutre (Sn) doit avoir un facteur de dimensionnement de 1,45/0,84 et. Pour les conducteurs de phases (Sph) un facteur de réduction de courant admissible de 0,84 doit être pris en compte :

Sn = Spho x 1,45/0,84

Sph = Spho x 1/0.84

• Lorsque le taux (ih3) n'est pas défini par l'utilisateur, on se placera dans les conditions de calcul correspondant à un taux compris entre 15% et 33%. Sn = Sph = Spho x 1/0,84 (facteur de dimensionnement pour l'ensemble des conducteurs, par rapport à la section Spho calculée).


Calcul de la chute de tension en ligne en régime permanent

La chute de tension en ligne en régime permanent est à prendre en compte pour l'utilisation du récepteur dans des conditions normales (limites fixées par les constructeurs des récepteurs).

l

cos - 0.85

Plus simplement, les tableaux ci-dessous donnent la chute de tension en % dans 100 m de câble, en 400 V/50 Hz triphasé, en fonction de la section du câble et du courant véhiculé (In du récepteur). Ces valeurs sont données pour un cos ϕ de 0,85 dans le cas d'un moteur et de 1 pour un récepteur non inductif. Ces tableaux peuvent être utilisés pour des longueurs de câble L $_{\not=}$ 100 m : il suffit d'appliquer au résultat le coefficient L/100.

Chute de tension maximale entre l'origine de l'installation BT et l'utilisation

	éclairage	autres usages (force motrice)
abonné alimenté par le réseau BT de distribution publique	3%	5%
abonné propriétaire de son poste HT-A/BT	6%	8% (1)

⁽¹⁾ Entre le point de raccordement de l'abonné BT et le moteur.

Chute de tension dans 100 m de câble en 400 V/50 Hz triphasé (%)

côs = 0,	cuiv	ro															alun	niniur	n									
S (mm²)	1,5	2,5	4	6	10	16	25	35	50	70	95	120	150	185	240	200	10	16	25	35	50	70	95	120	150	185	240	300
_ , _ ,	1,5	2,5	4	0	10	10	25	33	50	70	95	120	150	100	240	300	10	10	25	33	50	70	95	120	150	100	240	300
In (A)	0.5	0.4		_	-	1	-	1	-		-	1	-	-	-	1	-	1			-	-	-	-	1	-		
1	0,5	0,4	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-		-
2	1,1	0,6	0,4		+	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-		-
3	1,5	1	0,6	0,4	-	-	-	-	-		-	-					0,4		-		-	-	-	-		-		
5	2,6	1,6	1	0,6	0,4		-	-	-	-	-	-		_	_	-	0,6	0,4			-		-	-	-	-		_
10	5,2	3,2	2	1,4	0,8	0,5		-		-	-	-	_	_		-	1,3	0,8	0,5		-	_	-	-	_			_
16	8,4	5	3,2	2,2	1,3	0,8	0,5										2,1	1,3	0,8	0,6								
20		6,3	4	2,6	1,6	1	0,6										2,5	1,6	1,1	0,7	0,5							
25		7,9	5	3,3	2	1,3	0,8	0,6									3,2	2	1,3	0,9	0,6	0,5						
32			6,3	4,2	2,6	1,6	1,1	0,8	0,5								4,1	2,6	1,6	1,2	0,9	0,6	0,5					
40			7,9	5,3	3,2	2,1	1,4	1	0,7	0,5							5,1	3,2	2,1	1,5	1,1	0,8	0,6	0,5				
50				6,7	4,1	2,5	1,6	1,2	0,9	0,6	0,5						6,4	4,1	2,6	1,9	1,4	1	0,7	0,6	0,5			
63				8,4	5	3,2	2,1	1,5	1,1	0,8	0,6						8	5	3,2	2,3	1,7	1,3	0,9	0,8	0,6			
70					5,6	3,5	2,3	1,7	1,3	0,9	0,7	0,5						5,6	3,6	2,6	1,9	1,4	1,1	0,8	0,7			
80					6,4	4,1	2,6	1,9	1,4	1	0,8	0,6	0,5					6,4	4,1	3	2,2	1,5	1,2	1	0,8			
100					8	5	3,3	2,4	1,7	1,3	1	0,8	0,7	0,65					5,2	3,8	2,7	2	1,5	1,3	1	0,95		
125						4,4	4,1	3,1	2,2	1,6	1,3	1	0,9	0,21	0,76				6,5	4,7	3,3	2,4	1,9	1,5	1,3	1,2	0,95	
160							5,3	3,9	2,8	2,1	1,6	1,4	1,1	1		0,77				6	4,3	3,2	2,4	2	1,6	1,52	1,2	1
200							6,4	4,9	3,5	2,6	2	1,6	1,4	1,3	1,22	0,96					5,6	4	3	2,4	2	1,9	1,53	1,3
250								6	4,3	3,2	2,5	2,1	1,7	1,6	1,53						6,8	5	3,8	3,1	2,5	2,4	1,9	1,6
320									5,6	4,1	3,2	2,6	2,3	2,1	1,95						1	6,3	4,8	3,9	3,2	3	2,5	2,1
400					1				6,9	5,1	4	3,3	2,8	2,6	2,44							-,-	5,9	4,9	4,1	3.8	3	2,6
500									-,-	6,5	5	4,1	3,5	3,2	3	2,4								6,1	5	4,7	3,8	3,3
cos = 1									-	1 - 1 -		1 - 1 -	1-,-											1-7		1 - 7 -	, , ,	1-1-
câble	cuiv	re															alun	niniur	n									
câble	-		4	6	10	16	25	35	50	70	95	120	150	185	240	300	alun	-	n 25	35	50	70	95	120	150	185	240	300
câble S (mm²)	cuiv 1,5		4	6	10	16	25	35	50	70	95	120	150	185	240	300		niniur 16	T	35	50	70	95	120	150	185	240	300
câble	1,5	2,5	4	6	10	16	25	35	50	70	95	120	150	185	240	300		-	T	35	50	70	95	120	150	185	240	300
câble S (mm²) In (A)	1,5	2,5 0,4		6	10	16	25	35	50	70	95	120	150	185	240	300		-	T	35	50	70	95	120	150	185	240	300
câble S (mm²) In (A) 1	0,6 1,3	0,4 0,7	0,5		10	16	25	35	50	70	95	120	150	185	240	300	10	-	T	35	50	70	95	120	150	185	240	300
câble S (mm²) In (A) 1 2 3	0,6 1,3 1,9	0,4 0,7 1,1	0,5	0,5		16	25	35	50	70	95	120	150	185	240	300	0,5	16	T	35	50	70	95	120	150	185	240	300
câble S (mm²) In (A) 1 2 3 5	0,6 1,3 1,9 3,1	0,4 0,7 1,1 1,9	0,5 0,7 1,2	0,5	0,5		25	35	50	70	95	120	150	185	240	300	0,5 0,7	0,5	25	35	50	70	95	120	150	185	240	300
câble S (mm²) In (A) 1 2 3 5	0,6 1,3 1,9 3,1 6,1	0,4 0,7 1,1 1,9 3,7	0,5 0,7 1,2 2,3	0,5 0,8 1,5	0,5	0,5		35	50	70	95	120	150	185	240	300	0,5 0,7 1,4	0,5	T		50	70	95	120	150	185	240	300
Câble S (mm²) In (A) 1 2 3 5 10	0,6 1,3 1,9 3,1	0,4 0,7 1,1 1,9 3,7 5,9	0,5 0,7 1,2 2,3 3,7	0,5 0,8 1,5 2,4	0,5 0,9 1,4	0,5	0,6	35	50	70	95	120	150	185	240	300	0,5 0,7 1,4 2,3	0,5 0,9 1,4	0,6	0,7		70	95	120	150	185	240	300
Câble S (mm²) In (A) 1 2 3 5 10 16 20	0,6 1,3 1,9 3,1 6,1	0,4 0,7 1,1 1,9 3,7 5,9 7,4	0,5 0,7 1,2 2,3 3,7 4,6	0,5 0,8 1,5 2,4 3,1	0,5 0,9 1,4 1,9	0,5 0,9 1,2	0,6		50	70	95	120	150	185	240	300	0,5 0,7 1,4 2,3 3	0,5 0,9 1,4 1,9	0,6 1 1,2	0,7	0,6		95	120	150	185	240	300
Câble S (mm²) In (A) 1 2 3 5 10 16 20 25	0,6 1,3 1,9 3,1 6,1	0,4 0,7 1,1 1,9 3,7 5,9	0,5 0,7 1,2 2,3 3,7 4,6 5,8	0,5 0,8 1,5 2,4 3,1 3,9	0,5 0,9 1,4 1,9 2,3	0,5 0,9 1,2 1,4	0,6 0,7 0,9	0,6		70	95	120	150	185	240	300	0,5 0,7 1,4 2,3 3 3,7	0,5 0,9 1,4 1,9 2,3	0,6 1 1,2 1,4	0,7 0,8 1,1		0,5		120	150	185	240	300
Câble S (mm²) In (A) 1 2 3 5 10 16 20 25 32	0,6 1,3 1,9 3,1 6,1	0,4 0,7 1,1 1,9 3,7 5,9 7,4	0,5 0,7 1,2 2,3 3,7 4,6 5,8 7,4	0,5 0,8 1,5 2,4 3,1 3,9 5	0,5 0,9 1,4 1,9 2,3 3	0,5 0,9 1,2 1,4 1,9	0,6 0,7 0,9 1,2	0,6	0,6		95	120	150	185	240	300	0,5 0,7 1,4 2,3 3 3,7 4,8	0,5 0,9 1,4 1,9 2,3 3	0,6 1 1,2 1,4 1,9	0,7 0,8 1,1 1,4	0,6 0,7 1	0,5	0,5		150	185	240	300
Câble S (mm²) In (A) 1 2 3 5 10 16 20 25 32 40	0,6 1,3 1,9 3,1 6,1	0,4 0,7 1,1 1,9 3,7 5,9 7,4	0,5 0,7 1,2 2,3 3,7 4,6 5,8	0,5 0,8 1,5 2,4 3,1 3,9 5 6,1	0,5 0,9 1,4 1,9 2,3 3 3,7	0,5 0,9 1,2 1,4 1,9 2,3	0,6 0,7 0,9 1,2 1,4	0,6 0,8 1,1	0,6	0,5		120	150	185	240	300	0,5 0,7 1,4 2,3 3 3,7 4,8 5,9	0,5 0,9 1,4 1,9 2,3 3 3,7	0,6 1 1,2 1,4 1,9 2,3	0,7 0,8 1,1 1,4 1,7	0,6 0,7 1 1,2	0,5 0,7 0,8	0,5	0,5		185	240	300
Câble S (mm²) In (A) 1 2 3 5 10 16 20 25 32 40 50	0,6 1,3 1,9 3,1 6,1	0,4 0,7 1,1 1,9 3,7 5,9 7,4	0,5 0,7 1,2 2,3 3,7 4,6 5,8 7,4	0,5 0,8 1,5 2,4 3,1 3,9 5 6,1 7,7	0,5 0,9 1,4 1,9 2,3 3 3,7 4,6	0,5 0,9 1,2 1,4 1,9 2,3 2,9	0,6 0,7 0,9 1,2 1,4 1,9	0,6 0,8 1,1 1,4	0,6 0,7 0,9	0,5	0,5	120	150	185	240	300	0,5 0,7 1,4 2,3 3 3,7 4,8 5,9 7,4	0,5 0,9 1,4 1,9 2,3 3 3,7 4,6	0,6 1 1,2 1,4 1,9 2,3 3	0,7 0,8 1,1 1,4 1,7 2,1	0,6 0,7 1 1,2 1,4	0,5 0,7 0,8 1,1	0,5	0,5	0,5		240	300
Câble S (mm²) In (A) 1 2 3 5 10 16 20 25 32 40 63	0,6 1,3 1,9 3,1 6,1	0,4 0,7 1,1 1,9 3,7 5,9 7,4	0,5 0,7 1,2 2,3 3,7 4,6 5,8 7,4	0,5 0,8 1,5 2,4 3,1 3,9 5 6,1	0,5 0,9 1,4 1,9 2,3 3 3,7 4,6 5,9	0,5 0,9 1,2 1,4 1,9 2,3 2,9 3,6	0,6 0,7 0,9 1,2 1,4 1,9 2,3	0,6 0,8 1,1 1,4 1,6	0,6 0,7 0,9 1,2	0,5 0,6 0,8	0,5		150	185	240	300	0,5 0,7 1,4 2,3 3 3,7 4,8 5,9	0,5 0,9 1,4 1,9 2,3 3 3,7 4,6 5,9	0,6 1 1,2 1,4 1,9 2,3 3 3,7	0,7 0,8 1,1 1,4 1,7 2,1 2,7	0,6 0,7 1 1,2 1,4 1,9	0,5 0,7 0,8 1,1 1,4	0,5 0,6 0,8 1	0,5 0,6 0,8	0,5	0,6	240	300
Câble S (mm²) In (A) 1 2 3 5 10 16 20 25 32 40 50 63 70	0,6 1,3 1,9 3,1 6,1	0,4 0,7 1,1 1,9 3,7 5,9 7,4	0,5 0,7 1,2 2,3 3,7 4,6 5,8 7,4	0,5 0,8 1,5 2,4 3,1 3,9 5 6,1 7,7	0,5 0,9 1,4 1,9 2,3 3 3,7 4,6 5,9 6,5	0,5 0,9 1,2 1,4 1,9 2,3 2,9 3,6 4,1	0,6 0,7 0,9 1,2 1,4 1,9 2,3 2,6	0,6 0,8 1,1 1,4 1,6 1,9	0,6 0,7 0,9 1,2 1,3	0,5 0,6 0,8 0,9	0,5 0,6 0,7	0,5		185	240	300	0,5 0,7 1,4 2,3 3 3,7 4,8 5,9 7,4	0,5 0,9 1,4 1,9 2,3 3 3,7 4,6 5,9 6,5	0,6 1 1,2 1,4 1,9 2,3 3 3,7 4,1	0,7 0,8 1,1 1,4 1,7 2,1 2,7 3	0,6 0,7 1 1,2 1,4 1,9 2,1	0,5 0,7 0,8 1,1 1,4 1,4	0,5 0,6 0,8 1 1,1	0,5 0,6 0,8 0,9	0,5 0,7 0,8	0,6		300
Câble S (mm²) In (A) 1 2 3 5 10 16 20 25 32 40 50 63 70 80	0,6 1,3 1,9 3,1 6,1	0,4 0,7 1,1 1,9 3,7 5,9 7,4	0,5 0,7 1,2 2,3 3,7 4,6 5,8 7,4	0,5 0,8 1,5 2,4 3,1 3,9 5 6,1 7,7	0,5 0,9 1,4 1,9 2,3 3 3,7 4,6 5,9 6,5 7,4	0,5 0,9 1,2 1,4 1,9 2,3 2,9 3,6 4,1 4,6	0,6 0,7 0,9 1,2 1,4 1,9 2,3 2,6 3	0,6 0,8 1,1 1,4 1,6 1,9 2,1	0,6 0,7 0,9 1,2 1,3 1,4	0,5 0,6 0,8 0,9 1,1	0,5	0,5	0,5		240	300	0,5 0,7 1,4 2,3 3 3,7 4,8 5,9 7,4	0,5 0,9 1,4 1,9 2,3 3 3,7 4,6 5,9	0,6 1 1,2 1,4 1,9 2,3 3 3,7 4,1 4,8	0,7 0,8 1,1 1,4 1,7 2,1 2,7 3 3,4	0,6 0,7 1 1,2 1,4 1,9 2,1 2,3	0,5 0,7 0,8 1,1 1,4 1,4 1,7	0,5 0,6 0,8 1 1,1 1,3	0,5 0,6 0,8 0,9	0,5 0,7 0,8 0,9	0,6 0,7 0,8	0,6	
Câble S (mm²) In (A) 1 2 3 5 10 16 20 25 32 40 50 63 70 80 100	0,6 1,3 1,9 3,1 6,1	0,4 0,7 1,1 1,9 3,7 5,9 7,4	0,5 0,7 1,2 2,3 3,7 4,6 5,8 7,4	0,5 0,8 1,5 2,4 3,1 3,9 5 6,1 7,7	0,5 0,9 1,4 1,9 2,3 3 3,7 4,6 5,9 6,5	0,5 0,9 1,2 1,4 1,9 2,3 2,9 3,6 4,1 4,6 5,8	0,6 0,7 0,9 1,2 1,4 1,9 2,3 2,6 3 3,7	0,6 0,8 1,1 1,4 1,6 1,9 2,1 2,6	0,6 0,7 0,9 1,2 1,3 1,4 1,9	0,5 0,6 0,8 0,9 1,1 1,4	0,5 0,6 0,7 0,8 1	0,5	0,5	0,6		300	0,5 0,7 1,4 2,3 3 3,7 4,8 5,9 7,4	0,5 0,9 1,4 1,9 2,3 3 3,7 4,6 5,9 6,5	0,6 1 1,2 1,4 1,9 2,3 3 3,7 4,1 4,8 5,9	0,7 0,8 1,1 1,4 1,7 2,1 2,7 3 3,4 4,2	0,6 0,7 1 1,2 1,4 1,9 2,1 2,3 3	0,5 0,7 0,8 1,1 1,4 1,4 1,7 2,1	0,5 0,6 0,8 1 1,1 1,3 1,5	0,5 0,6 0,8 0,9 1 1,3	0,5 0,7 0,8 0,9 1,2	0,6 0,7 0,8 1	0,6	0,6
Câble S (mm²) In (A) 1 2 3 5 10 16 20 25 32 40 50 63 70 80 100 125	0,6 1,3 1,9 3,1 6,1	0,4 0,7 1,1 1,9 3,7 5,9 7,4	0,5 0,7 1,2 2,3 3,7 4,6 5,8 7,4	0,5 0,8 1,5 2,4 3,1 3,9 5 6,1 7,7	0,5 0,9 1,4 1,9 2,3 3 3,7 4,6 5,9 6,5 7,4	0,5 0,9 1,2 1,4 1,9 2,3 2,9 3,6 4,1 4,6	0,6 0,7 0,9 1,2 1,4 1,9 2,3 2,6 3 3,7 4,6	0,6 0,8 1,1 1,4 1,6 1,9 2,1 2,6 3,3	0,6 0,7 0,9 1,2 1,3 1,4 1,9 2,3	0,5 0,6 0,8 0,9 1,1 1,4 1,6	0,5 0,6 0,7 0,8 1 1,2	0,5 0,6 0,8 1	0,5 0,7 0,9		0,6		0,5 0,7 1,4 2,3 3 3,7 4,8 5,9 7,4	0,5 0,9 1,4 1,9 2,3 3 3,7 4,6 5,9 6,5	0,6 1 1,2 1,4 1,9 2,3 3 3,7 4,1 4,8	0,7 0,8 1,1 1,4 1,7 2,1 2,7 3 3,4 4,2 5,3	0,6 0,7 1 1,2 1,4 1,9 2,1 2,3 3 3,7	0,5 0,7 0,8 1,1 1,4 1,7 2,1 2,6	0,5 0,6 0,8 1 1,1 1,3 1,5 2	0,5 0,6 0,8 0,9 1 1,3 1,5	0,5 0,7 0,8 0,9 1,2 1,4	0,6 0,7 0,8 1 1,3	0,6	0,6
Câble S (mm²) In (A) 1 2 3 5 10 16 20 25 32 40 63 70 80 100 125 160	0,6 1,3 1,9 3,1 6,1	0,4 0,7 1,1 1,9 3,7 5,9 7,4	0,5 0,7 1,2 2,3 3,7 4,6 5,8 7,4	0,5 0,8 1,5 2,4 3,1 3,9 5 6,1 7,7	0,5 0,9 1,4 1,9 2,3 3 3,7 4,6 5,9 6,5 7,4	0,5 0,9 1,2 1,4 1,9 2,3 2,9 3,6 4,1 4,6 5,8	0,6 0,7 0,9 1,2 1,4 1,9 2,3 2,6 3 3,7 4,6 5,9	0,6 0,8 1,1 1,4 1,6 1,9 2,1 2,6 3,3 4,2	0,6 0,7 0,9 1,2 1,3 1,4 1,9 2,3 3	0,5 0,6 0,8 0,9 1,1 1,4 1,6 2,1	0,5 0,6 0,7 0,8 1 1,2 1,5	0,5 0,6 0,8 1 1,3	0,5 0,7 0,9 1,2	0,6	0,6	0,6	0,5 0,7 1,4 2,3 3 3,7 4,8 5,9 7,4	0,5 0,9 1,4 1,9 2,3 3 3,7 4,6 5,9 6,5	0,6 1 1,2 1,4 1,9 2,3 3 3,7 4,1 4,8 5,9	0,7 0,8 1,1 1,4 1,7 2,1 2,7 3 3,4 4,2	0,6 0,7 1 1,2 1,4 1,9 2,1 2,3 3 3,7 4,8	0,5 0,7 0,8 1,1 1,4 1,7 2,1 2,6 3,4	0,5 0,6 0,8 1 1,1 1,3 1,5 2 2,5	0,5 0,6 0,8 0,9 1 1,3 1,5 2	0,5 0,7 0,8 0,9 1,2 1,4 1,8	0,6 0,7 0,8 1 1,3 1,6	0,6 0,8 1 1,3	0,6 0,8 1,1
Câble S (mm²) In (A) 1 2 3 5 10 16 20 25 32 40 50 63 70 80 100 125 160 200	0,6 1,3 1,9 3,1 6,1	0,4 0,7 1,1 1,9 3,7 5,9 7,4	0,5 0,7 1,2 2,3 3,7 4,6 5,8 7,4	0,5 0,8 1,5 2,4 3,1 3,9 5 6,1 7,7	0,5 0,9 1,4 1,9 2,3 3 3,7 4,6 5,9 6,5 7,4	0,5 0,9 1,2 1,4 1,9 2,3 2,9 3,6 4,1 4,6 5,8	0,6 0,7 0,9 1,2 1,4 1,9 2,3 2,6 3 3,7 4,6	0,6 0,8 1,1 1,4 1,6 1,9 2,1 2,6 3,3 4,2 5,3	0,6 0,7 0,9 1,2 1,3 1,4 1,9 2,3 3 3,7	0,5 0,6 0,8 0,9 1,1 1,4 1,6 2,1 2,6	0,5 0,6 0,7 0,8 1 1,2 1,5 2	0,5 0,6 0,8 1 1,3 1,5	0,5 0,7 0,9 1,2 1,4	0,6 0,7 1 1,3	0,6	0,6	0,5 0,7 1,4 2,3 3 3,7 4,8 5,9 7,4	0,5 0,9 1,4 1,9 2,3 3 3,7 4,6 5,9 6,5	0,6 1 1,2 1,4 1,9 2,3 3 3,7 4,1 4,8 5,9	0,7 0,8 1,1 1,4 1,7 2,1 2,7 3 3,4 4,2 5,3	0,6 0,7 1 1,2 1,4 1,9 2,1 2,3 3 3,7 4,8 5,9	0,5 0,7 0,8 1,1 1,4 1,4 1,7 2,1 2,6 3,4 4,2	0,5 0,6 0,8 1 1,1 1,3 1,5 2 2,5 3,2	0,5 0,6 0,8 0,9 1 1,3 1,5 2 2,4	0,5 0,7 0,8 0,9 1,2 1,4 1,8 2,3	0,6 0,7 0,8 1 1,3 1,6 2	0,6 0,8 1 1,3 1,6	0,6 0,8 1,1 1,4
Câble S (mm²) In (A) 1 2 3 5 10 16 20 25 32 40 50 63 70 80 100 125 160 200 250	0,6 1,3 1,9 3,1 6,1	0,4 0,7 1,1 1,9 3,7 5,9 7,4	0,5 0,7 1,2 2,3 3,7 4,6 5,8 7,4	0,5 0,8 1,5 2,4 3,1 3,9 5 6,1 7,7	0,5 0,9 1,4 1,9 2,3 3 3,7 4,6 5,9 6,5 7,4	0,5 0,9 1,2 1,4 1,9 2,3 2,9 3,6 4,1 4,6 5,8	0,6 0,7 0,9 1,2 1,4 1,9 2,3 2,6 3 3,7 4,6 5,9	0,6 0,8 1,1 1,4 1,6 1,9 2,1 2,6 3,3 4,2	0,6 0,7 0,9 1,2 1,3 1,4 1,9 2,3 3 3,7 4,6	0,5 0,6 0,8 0,9 1,1 1,4 1,6 2,1 2,6 3,3	0,5 0,6 0,7 0,8 1 1,2 1,5 2 2,4	0,5 0,6 0,8 1 1,3 1,5 1,9	0,5 0,7 0,9 1,2 1,4 1,7	0,6 0,7 1 1,3 1,4	0,6	0,6	0,5 0,7 1,4 2,3 3 3,7 4,8 5,9 7,4	0,5 0,9 1,4 1,9 2,3 3 3,7 4,6 5,9 6,5	0,6 1 1,2 1,4 1,9 2,3 3 3,7 4,1 4,8 5,9	0,7 0,8 1,1 1,4 1,7 2,1 2,7 3 3,4 4,2 5,3	0,6 0,7 1 1,2 1,4 1,9 2,1 2,3 3 3,7 4,8	0,5 0,7 0,8 1,1 1,4 1,7 2,1 2,6 3,4 4,2 5,3	0,5 0,6 0,8 1 1,1 1,3 1,5 2 2,5 3,2 3,9	0,5 0,6 0,8 0,9 1 1,3 1,5 2 2,4 3,1	0,5 0,7 0,8 0,9 1,2 1,4 1,8 2,3 2,8	0,6 0,7 0,8 1 1,3 1,6 2 2,5	0,6 0,8 1 1,3 1,6 2	0,6 0,8 1,1 1,4 1,6
Câble S (mm²) In (A) 1 2 3 5 10 16 20 25 32 40 50 63 70 80 100 125 160 200 250 320	0,6 1,3 1,9 3,1 6,1	0,4 0,7 1,1 1,9 3,7 5,9 7,4	0,5 0,7 1,2 2,3 3,7 4,6 5,8 7,4	0,5 0,8 1,5 2,4 3,1 3,9 5 6,1 7,7	0,5 0,9 1,4 1,9 2,3 3 3,7 4,6 5,9 6,5 7,4	0,5 0,9 1,2 1,4 1,9 2,3 2,9 3,6 4,1 4,6 5,8	0,6 0,7 0,9 1,2 1,4 1,9 2,3 2,6 3 3,7 4,6 5,9	0,6 0,8 1,1 1,4 1,6 1,9 2,1 2,6 3,3 4,2 5,3	0,6 0,7 0,9 1,2 1,3 1,4 1,9 2,3 3 3,7 4,6 5,9	0,5 0,6 0,8 0,9 1,1 1,4 1,6 2,1 2,6 3,3 4,2	0,5 0,6 0,7 0,8 1 1,2 2,4 3,2	0,5 0,6 0,8 1 1,3 1,5 1,9 2,4	0,5 0,7 0,9 1,2 1,4 1,7 2,3	0,6 0,7 1 1,3 1,4 1,9	0,6 0,8 1 1,2 1,5	0,6 0,8 0,9 1,2	0,5 0,7 1,4 2,3 3 3,7 4,8 5,9 7,4	0,5 0,9 1,4 1,9 2,3 3 3,7 4,6 5,9 6,5	0,6 1 1,2 1,4 1,9 2,3 3 3,7 4,1 4,8 5,9	0,7 0,8 1,1 1,4 1,7 2,1 2,7 3 3,4 4,2 5,3	0,6 0,7 1 1,2 1,4 1,9 2,1 2,3 3 3,7 4,8 5,9	0,5 0,7 0,8 1,1 1,4 1,4 1,7 2,1 2,6 3,4 4,2	0,5 0,6 0,8 1 1,1 1,3 1,5 2 2,5 3,2 3,9 5	0,5 0,6 0,8 0,9 1 1,3 1,5 2 2,4 3,1	0,5 0,7 0,8 0,9 1,2 1,4 1,8 2,3 2,8 3,6	0,6 0,7 0,8 1 1,3 1,6 2 2,5 3,2	0,6 0,8 1 1,3 1,6 2 2,5	0,6 0,8 1,1 1,4 1,6 2
Câble S (mm²) In (A) 1 2 3 5 10 16 20 25 32 40 50 63 70 80 100 125 160 200 250	0,6 1,3 1,9 3,1 6,1	0,4 0,7 1,1 1,9 3,7 5,9 7,4	0,5 0,7 1,2 2,3 3,7 4,6 5,8 7,4	0,5 0,8 1,5 2,4 3,1 3,9 5 6,1 7,7	0,5 0,9 1,4 1,9 2,3 3 3,7 4,6 5,9 6,5 7,4	0,5 0,9 1,2 1,4 1,9 2,3 2,9 3,6 4,1 4,6 5,8	0,6 0,7 0,9 1,2 1,4 1,9 2,3 2,6 3 3,7 4,6 5,9	0,6 0,8 1,1 1,4 1,6 1,9 2,1 2,6 3,3 4,2 5,3	0,6 0,7 0,9 1,2 1,3 1,4 1,9 2,3 3 3,7 4,6	0,5 0,6 0,8 0,9 1,1 1,4 1,6 2,1 2,6 3,3	0,5 0,6 0,7 0,8 1 1,2 1,5 2 2,4	0,5 0,6 0,8 1 1,3 1,5 1,9	0,5 0,7 0,9 1,2 1,4 1,7	0,6 0,7 1 1,3 1,4	0,6	0,6	0,5 0,7 1,4 2,3 3 3,7 4,8 5,9 7,4	0,5 0,9 1,4 1,9 2,3 3 3,7 4,6 5,9 6,5	0,6 1 1,2 1,4 1,9 2,3 3 3,7 4,1 4,8 5,9	0,7 0,8 1,1 1,4 1,7 2,1 2,7 3 3,4 4,2 5,3	0,6 0,7 1 1,2 1,4 1,9 2,1 2,3 3 3,7 4,8 5,9	0,5 0,7 0,8 1,1 1,4 1,7 2,1 2,6 3,4 4,2 5,3	0,5 0,6 0,8 1 1,1 1,3 1,5 2 2,5 3,2 3,9	0,5 0,6 0,8 0,9 1 1,3 1,5 2 2,4 3,1	0,5 0,7 0,8 0,9 1,2 1,4 1,8 2,3 2,8	0,6 0,7 0,8 1 1,3 1,6 2 2,5	0,6 0,8 1 1,3 1,6 2	0,6 0,8 1,1 1,4 1,6

Pour un réseau triphasé 230 V, multiplier ces valeurs par $\sqrt{3}=1,73$. Pour un réseau monophasé 230 V, multiplier ces valeurs par 2.

Détermination des courants de court-circuits (Icc)

section des conducteurs de phase (mm²)	long	Jeur d	e la ca	analisa	ation (en m)																
														1,3	1,8	2,6	3,6	5,1	7,3	10,3	15	21
1,5 2,5												1,1	1.5	2,1	3,0	4,3	6,1	8,6	12	17	24	34
													1,5									
4 6											1 /	1,7 2,0	1,9	2,6	3,7	5,3	7,4 11,2	10,5	15	21 32	30 45	42 63
1000										0.1	1,4		2,8	4,0	5,6	7,9		16	22		97	13
10								17	2.4	2,1	3,0	4,3	6,1	8,6	12,1	17	24	34	48	68		
16						1.0	1.0	1,7	2,4	3,4	4,8	6,8	9,7	14	19	27	39	55	77	110	155	21
25						1,3	1,9	2,7	3,8	5,4	7,6	10,7	15	21	30	43	61	86	121	171	242	34
35					1.0	1,9	2,6	3,7	5,3	7,5	10,6	15	21	30	42	60	85	120	170	240	339	47
50					1,8	2,5	3,6	5,1	7,2	10,2	14	20	29	41	58	81	115	163	230	325	460	
70				0.5	2,6	3,7	5,3	7,5	10,6	15	21	30	42	60	85	120	170	240	339			
95		1.0	0.0	2,5	3,6	5,1	7,2	10,2	14	20	29	41	58	81	115	163	230	325	460			
120	4.0	1,6	2,3	3,2	4,5	6,4	9,1	13	18	26	36	51	73	103	145	205	291	311				
150	1,2	1,7	2,5	3,5	4,9	7,0	9,9	14	20	28	39	56	79	112	158	223	316	447				
185	1,5	2,1	2,9	4,1	5,8	8,2	11,7	16	23	33	47	66	93	132	187	264	373	528				
240	1,8	2,6	3,6	5,1	7,3	10,3	15	21	29	41	58	82	116	164	232	329	465	658				
300	2,2	3,1	4,4	6,2	8,7		17	25	35	49	70	99	140	198	279	395	559					
2 x 120	2,3	3,2	4,5	6,4	9,1	12,8	18	26	36	51	73	103	145	205	291	411	581					
2 x 150	2,5	3,5	4,9	7,0	9,9	14,0	20	28	39	56	79	112	158	223	316	447	632					
2 x 185	2,9	4,1	5,8	8,2	11,7	16,5	23	33	47	66	93	132	187	264	373	528	747					
cc amont	Icc a	val																				
(en kA)																						
50	47,7	47,7	46,8	45,6	43,9	41,8	39,2	36,0	32,2	28,1	23,8	19,5	15,6	12,1	9,2	6,9	5,1	3,7	2,7	1,9	1,4	1,0
40	38,5	38,5	37,9	37,1	36,0	34,6	32,8	30,5	27,7	24,6	21,2	17,8	14,5	11,4	8,8	6,7	5,0	3,6	2,6	1,9	1,4	1,0
35	33,8	33,8	33,4	32,8	31,9	30,8	29,3	27,5	25,2	22,6	19,7	16,7	13,7	11,0	8,5	6,5	4,9	3,6	2,6	1,9	1,4	1,0
30	29,1	29,1	28,8	28,3	27,7	26,9	25,7	24,3	22,5	20,4	18,0	15,5	12,9	10,4	8,2	6,3	4,8	3,5	2,6	1,9	1,4	1,0
25	24,4	24,4	24,2	23,8	23,4	22,8	22,0	20,9	19,6	18,0	16,1	14,0	11,9	9,8	7,8	6,1	4,6	3,4	2,5	1,9	1,3	1,0
20	19,6	19,6	19,5	19,2	19,0	18,6	18,0	17,3	16,4	15,2	13,9	12,3	10,6	8,9	7,2	5,7	4,4	3,3	2,5	1,8	1,3	1,0
15	14,8	14,8	14,7	14,6	14,4	14,2	13,9	13,4		12,2	11,3	10,2	9,0	7,7	6,4	5,2	4,1	3,2	2,4	1,8	1,3	0,9
10	9,9	9,9	9,9	9,8	9,7	9,6	9,5	9,3	9,0	8,6	8,2	7,6	6,9	6,2	5,3	4,4	3,6	2,9	2,2	1,7	1,2	0,9
7	7,0	7,0	6,9	6,9	6,9	6,8	6,7	6,6	6,5	6,3	6,1	5,7	5,3	4,9	4,3	3,7	3,1	2,5	2,0	1,6	1,2	0,9
5	5,0	5,0	5,0	5,0	4,9	4,9	4,9	4,8	4,7	4,6	4,5	4,3	4,1	3,8	3,5	3,1	2,7	2,2	1,8	1,4	1,1	0,8
4	4,0	4,0	4,0	4,0	4,0	3,9	3,9	3,9	3,8	3,8	3,7	3,6	3,4	3,2	3,0	2,7	2,3	2,0	1,7	1,3	1,0	0,8
3	3,0	3,0	3,0	3,0	3,0	3,0	3,0	2,9	2,9	2,9	2,8	2,7	2,6	2,5	2,4	2,2	2.0	1,7	1,5	1,2	1,0	0,8
2	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	1,9	1,9	1,9	1,8	1,8	1,7	1,6	1,5	1,3	1,2	1,0	0,8	0,7
1	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	0,9	0,9	0,9	0,8	0,8	0,7	0,7	0,6	0,5
Alu (réseau 400 V	/)							,				,										
section des	long	ueur d	e la ca	analisa	ation (en m)																
conducteurs																						
de phase (mm²)											1 5	2.1	2.0	4.1	E 0	0.0	116	16	22	22	47	66
10										2,2	1,5 3,0	2,1	2,9 6,1	4,1 8,6	5,8 12	8,2 17	11,6 24	16 34	23 49	33 69	47 98	13
								1,7	2,4	3,4	4,8	4,3 6,7				27			76			
16									6.4	0.4		D. /	9,5	13	19		38	54		108	152 213	21 30
16 25							17						12	10								.51)
10 16 25 35						1.6	1,7	2,4	3,3	4,7	6,7	9,4	13	19	27	38	53	75	107	151		-
16 25 35 50						1,6	2,3	2,4 3,2	3,3 4,5	4,7 6,4	6,7 9,0	9,4 13	18	26	36	51	72	102	145	205	290	41
16 25 35 50 70					0.0	2,4	2,3 3,3	2,4 3,2 4,7	3,3 4,5 6,7	4,7 6,4 9,4	6,7 9,0 13	9,4 13 19	18 27	26 38	36 53	51 75	72 107	102 151	145 213	205 302		-
16 25 35 50 70					2,3	2,4 3,2	2,3 3,3 4,5	2,4 3,2 4,7 6,4	3,3 4,5 6,7 9,0	4,7 6,4 9,4 13	6,7 9,0 13 18	9,4 13 19 26	18 27 36	26 38 51	36 53 72	51 75 102	72 107 145	102 151 205	145 213 290	205	290	-
16 25 35 50 70 95					2,9	2,4 3,2 4,0	2,3 3,3 4,5 5,7	2,4 3,2 4,7 6,4 8,1	3,3 4,5 6,7 9,0 11,4	4,7 6,4 9,4 13	6,7 9,0 13 18 23	9,4 13 19 26 32	18 27 36 46	26 38 51 65	36 53 72 91	51 75 102 129	72 107 145 183	102 151 205 259	145 213 290 366	205 302	290	-
16 25 35 50 70 95 120					2,9 3,1	2,4 3,2 4,0 4,4	2,3 3,3 4,5 5,7 6,2	2,4 3,2 4,7 6,4 8,1 8,8	3,3 4,5 6,7 9,0 11,4 12	4,7 6,4 9,4 13 16 18	6,7 9,0 13 18 23 25	9,4 13 19 26 32 35	18 27 36 46 50	26 38 51 65 70	36 53 72 91 99	51 75 102 129 141	72 107 145 183 199	102 151 205 259 281	145 213 290 366 398	205 302	290	-
16 25 35 50 70 95 120 150				2,6	2,9 3,1 3,7	2,4 3,2 4,0 4,4 5,2	2,3 3,3 4,5 5,7 6,2 7,3	2,4 3,2 4,7 6,4 8,1 8,8 10,4	3,3 4,5 6,7 9,0 11,4 12 15	4,7 6,4 9,4 13 16 18 21	6,7 9,0 13 18 23 25 29	9,4 13 19 26 32 35 42	18 27 36 46 50 59	26 38 51 65 70 83	36 53 72 91 99 117	51 75 102 129 141 166	72 107 145 183 199 235	102 151 205 259 281 332	145 213 290 366	205 302	290	-
16 25 35 50 70 95 120 150		1,6	2,3	3,2	2,9 3,1 3,7 4,6	2,4 3,2 4,0 4,4 5,2 6,5	2,3 3,3 4,5 5,7 6,2 7,3 9,1	2,4 3,2 4,7 6,4 8,1 8,8 10,4	3,3 4,5 6,7 9,0 11,4 12 15 18	4,7 6,4 9,4 13 16 18 21 26	6,7 9,0 13 18 23 25 29 37	9,4 13 19 26 32 35 42 52	18 27 36 46 50 59 73	26 38 51 65 70 83 103	36 53 72 91 99 117 146	51 75 102 129 141 166 207	72 107 145 183 199 235 293	102 151 205 259 281 332 414	145 213 290 366 398	205 302	290	-
16 25 35 50 70 95 120 150 185 240	1,4	1,9	2,7	3,2 3,9	2,9 3,1 3,7 4,6 5,5	2,4 3,2 4,0 4,4 5,2 6,5 7,8	2,3 3,3 4,5 5,7 6,2 7,3 9,1	2,4 3,2 4,7 6,4 8,1 8,8 10,4 13	3,3 4,5 6,7 9,0 11,4 12 15 18 22	4,7 6,4 9,4 13 16 18 21 26 31	6,7 9,0 13 18 23 25 29 37 44	9,4 13 19 26 32 35 42 52 62	18 27 36 46 50 59 73 88	26 38 51 65 70 83 103 124	36 53 72 91 99 117 146 176	51 75 102 129 141 166 207 249	72 107 145 183 199 235 293 352	102 151 205 259 281 332 414 497	145 213 290 366 398	205 302	290	-
116 225 335 500 70 95 1120 1150 1185 240 300 2 x 120	1,4	1,9 2,0	2,7 2,9	3,2 3,9 4,0	2,9 3,1 3,7 4,6 5,5 5,7	2,4 3,2 4,0 4,4 5,2 6,5 7,8 8,1	2,3 3,3 4,5 5,7 6,2 7,3 9,1 11 11,4	2,4 3,2 4,7 6,4 8,1 8,8 10,4 13 16	3,3 4,5 6,7 9,0 11,4 12 15 18 22 23	4,7 6,4 9,4 13 16 18 21 26 31 32	6,7 9,0 13 18 23 25 29 37 44 46	9,4 13 19 26 32 35 42 52 62 65	18 27 36 46 50 59 73 88 91	26 38 51 65 70 83 103 124 129	36 53 72 91 99 117 146 176 183	51 75 102 129 141 166 207 249 259	72 107 145 183 199 235 293 352 366	102 151 205 259 281 332 414	145 213 290 366 398	205 302	290	-
16 25 35 50	527 775	1,9	2,7	3,2 3,9	2,9 3,1 3,7 4,6 5,5	2,4 3,2 4,0 4,4 5,2 6,5 7,8	2,3 3,3 4,5 5,7 6,2 7,3 9,1 11 11,4	2,4 3,2 4,7 6,4 8,1 8,8 10,4 13	3,3 4,5 6,7 9,0 11,4 12 15 18 22	4,7 6,4 9,4 13 16 18 21 26 31	6,7 9,0 13 18 23 25 29 37 44	9,4 13 19 26 32 35 42 52 62	18 27 36 46 50 59 73 88	26 38 51 65 70 83 103 124	36 53 72 91 99 117 146 176	51 75 102 129 141 166 207 249	72 107 145 183 199 235 293 352	102 151 205 259 281 332 414 497	145 213 290 366 398	205 302	290	-

Dossier ressources 20-EQCIN Page 14/17

Nota : Pour une tension triphasée de 230 V entre phases, diviser les longueurs ci-dessus par √3 =1,732.

Schéma de liaison à la terre TN

Longueurs maximales des canalisations

Longueurs maximales (en mètres) des canalisations en schéma TN protégées contre les contacts indirects par des disjoncteurs.

P25M

Réseau triphasé en 400 V, câble cuivre, Sph= S_{PE} , U_{i} = 50 V, en schéma TN.

DT40, iC60N/L, C120N/H

Courbe B

Réseau triphasé en 400 V, câble cuivre, Sph= S_{PE} , U_{i} =50 V, en schéma TN.

DT40, DT40N, DT60N/H, iC60N/H/L, C120N/H, NG125N/L

Courbe C

Réseau triphasé en 400 V, câble cuivre, $Sph = S_{PE}$, $U_L = 50$ V, en schéma TN.

DT40, DT40N, iC60N/L, C120N/H, iC60L, NG125N/L

Courbe D et Courbe K

Réseau triphasé en 400 V, câble cuivre, Sph= S_{PE} , U_{i} = 50 V, en schéma TN.

iC60LMA, NG125LMA

Courbe MA

Réseau triphasé en 400 V, câble cuivre, Sph= $S_{\rm PE}$, U, =50 V, en schéma TN.

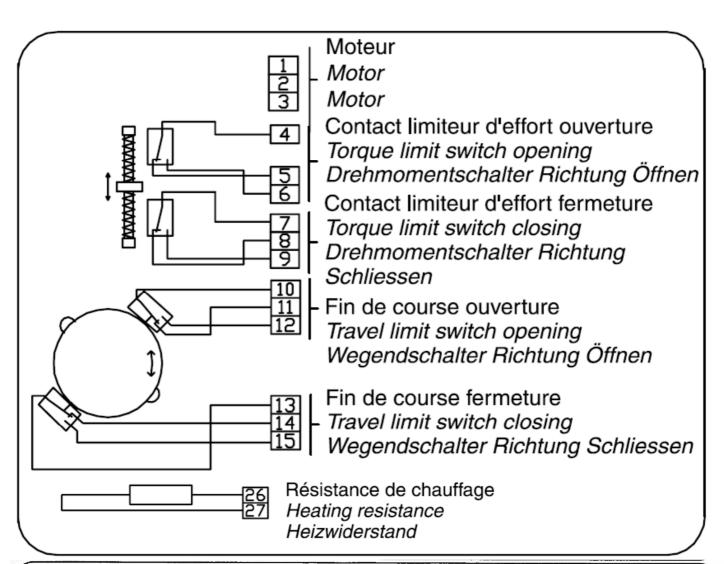
Facteurs de correction à appliquer aux longueurs données par les tableaux

	m = Sphase Spe	1	2	3	4
réseaux 400 V (1)	câble cuivre	1	0,67	0,50	0,40
entre phases	câble alu	0,62	0,42	0,31	0,25

(1) Pour les réseaux 230 V entre phases, appliquer, en plus, le coefficient 0,57. Pour les réseaux 230 V monophasés (entre phase et neutre), ne pas appliquer ce coefficient supplémentaire

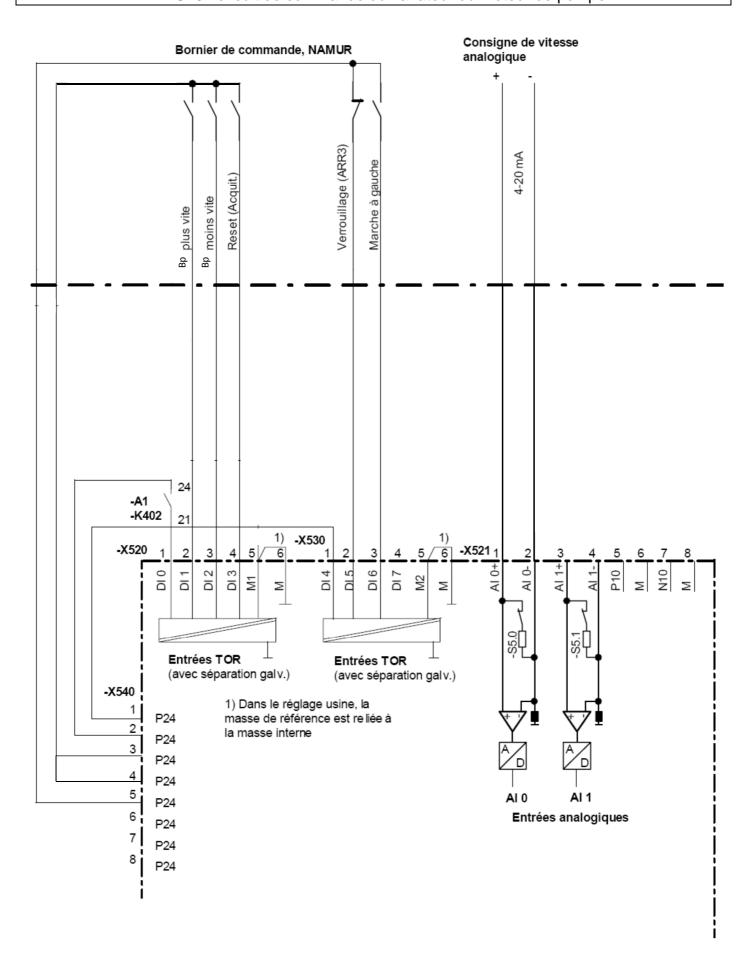
Sphases	calibr	e (A)											
mm ²	0,16	0,24	0,4	0,6	1	1,6	2,4	4	6	10	16	20	25
1,5				694	416	260	173	104	69	41	26	20	16
2,5					694	434	289	173	115	69	43	34	27
4						694	462	277	185	111	69	55	44
6							694	414	277	167	104	83	66

Sphases	calibre	(A)								
mm ²	10	16	20	25	32	40	50	63	80	100
1,5	120	75	60	48	38	30	24	19	15	12
2,5	200	125	100	80	63	50	40	32	25	20
4	320	200	160	128	100	80	64	51	40	32
6	480	300	240	192	150	120	96	76	60	48
10	800	500	400	320	250	200	160	127	100	80
16		800	640	512	400	320	256	203	160	128
25				800	625	500	400	317	250	200
35					875	700	560	444	350	280
47,5							760	603	475	380


Sphases	calib	calibre (A)														
mm ²	1	2	3	4	6	10	16	20	25	32	40	50	63	80	100	125
1,5	600	300	200	150	100	60	38	30	24	19	15	12	10	8	6	5
2,5		500	333	250	167	100	63	50	40	31	25	20	16	13	10	8
4			533	400	267	160	100	80	64	50	40	32	25	20	16	13
6				600	400	240	150	120	96	75	60	48	38	30	24	19
10					667	400	250	200	160	125	100	80	63	50	40	32
16						640	400	320	256	200	160	128	102	80	64	51
25							625	500	400	313	250	200	159	125	100	80
35							875	700	560	438	350	280	222	175	140	112
47,5									760	594	475	380	301	237	190	152

Sphases	calib	alibre (A)														
mm ²	1	2	3	4	6	10	16	20	25	32	40	50	63	80	100	125
1,5	429	214	143	107	71	43	27	21	17	13	11	9	7	5	4	3
2,5	714	357	238	179	119	71	45	36	29	22	18	14	11	9	7	6
4		571	381	286	190	114	71	57	46	36	29	23	18	14	11	9
6		857	571	429	286	171	107	86	69	54	43	34	27	21	17	14
10			952	714	476	286	179	143	114	89	71	57	45	36	29	23
16					762	457	286	229	183	143	114	91	73	57	46	37
25						714	446	357	286	223	179	143	113	89	71	57
35							625	500	400	313	250	200	159	125	100	80
47.5							843	674	539	421	337	270	214	169	135	108

Sphases	calibre	calibre (A)													
mm ²	1,6	2,5	4	6,3	10	12,5	16	25	40	63	80				
1,5	261	167	103	66	41	33	26	16	10	6	5				
2,5	435	278	172	110	69	55	43	27	17	10	8				
4	696	444	276	176	111	89	69	44	27	16	14				
6		667	414	264	167	133	104	66	41	24	20				
10			690	440	278	222	174	111	69	40	34				
16				703	444	356	278	178	111	65	55				
25						556	435	278	174	102	86				
35						778	609	389	243	143	122				
47,5							826	528	330	194	165				


Dans ces tableaux :

- il est tenu compte de l'influence des réactances des conducteurs pour les fortes sections, en augmentant la résistance de :
- 0 15% pour S = 150 mm²
- o 20% pour S = 185 mm²
- o 25% pour S = 240 mm²
- o 30% pour S = 300 mm²
- 0,023 Ω mm²/m (Cu) = 0,037 Ω mm²/m (Alu)
- \bullet le fonctionnement du magnétique est garanti pour lm \pm 20%. Les calculs ont été effectués dans le cas le plus défavorable soit pour lm \pm 20%.

Dossier ressources 20-EQCIN Page 17/17

BREVET DE TECHNICIEN SUPÉRIEUR

ÉLECTROTECHNIQUE

SESSION 2020 ÉPREUVE E4.2

Station de captage d'eau brute

DOSSIER RÉPONSES

Ce dossier est à rendre agrafé avec une copie

Il contient les documents réponse à compléter, pour lesquels les repères sont les mêmes que les questions correspondantes au dossier présentation-questionnement.

Partie B	2
DREP1 : document réponse relatif à la question B.1.1	2
Partie C	2
DREP2 : document réponse relatif à la question C.1.1	2
DREP3 : document réponse relatif à la question C.1.2	3
DREP4 : document réponse relatif à la question C.1.3	3
DREP5 : document réponse relatif à la question C.1.4	4
DREP6 : document réponse relatif à la question C.2.1	4
DREP7 : document réponse relatif à la question C.2.2	5
Partie D	5
DREP8 : document réponse relatif à la question D.1	5

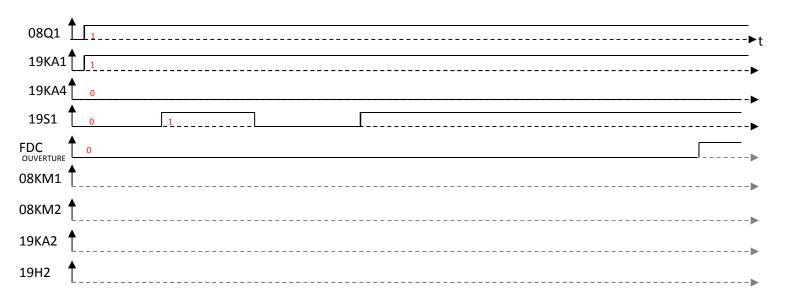
Partie B

DREP1 : document réponse relatif à la question B.1.1

Armoire	P active	Q réactive	S apparente	cos φ	tan φ
« TDA »	60 kW			0,9	
« Process Pompage »	50 kW			0,8	
Onduleur					
« Process – Automate »			42 kVA	0,95	
Total					
Calcul de la pu	iissance appare	nte du transforn	nateur TR2n :		

Puissance apparente normalisée choisie pour TR2n :

Courant nominal du transformateur TR2n :

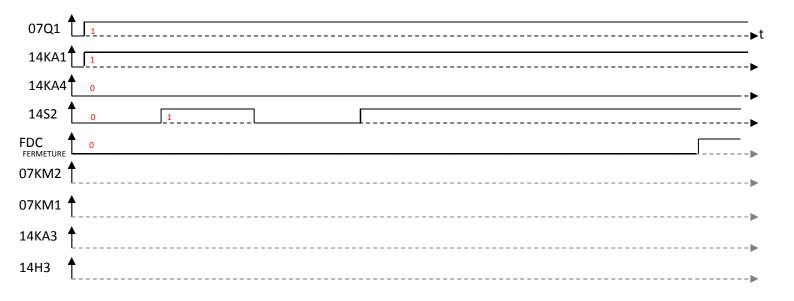

Partie C

DREP2 : document réponse relatif à la question C.1.1

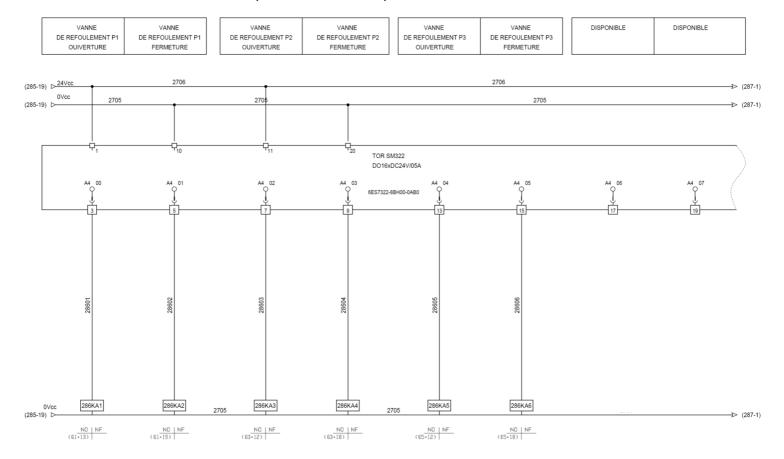
08Q1 est le disjoncteur sectionneur de protection du moteur de la vanne d'aspiration.

En situation initiale, la vanne est fermée, les contacts des limiteurs d'effort sont au repos, 19KA3 et 19H3 sont alimentés.

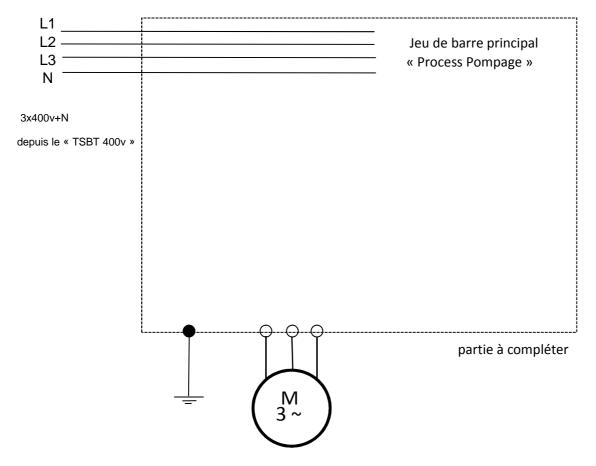
Le limiteur d'effort est au repos pendant toute la phase d'ouverture de la vanne.

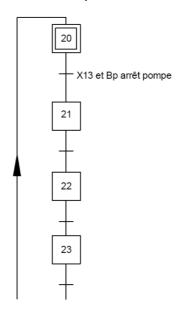


DREP3 : document réponse relatif à la question C.1.2


07Q1 est le disjoncteur sectionneur de protection du moteur de la vanne de refoulement.

En situation initiale, la vanne est ouverte, les contacts des limiteurs d'effort sont au repos, 14KA2 et 14H2 sont alimentés. Les relais 61KA2 et 61KA3 sont au repos pendant cette étude.


Le limiteur d'effort est au repos pendant toute la phase de fermeture de la vanne.


DREP4 : document réponse relatif à la question C.1.3

Folio 7 de l'armoire « Process Pompage »

DREP6 : document réponse relatif à la question C.2.1

DREP7 : document réponse relatif à la question C.2.2

Folio 78 de l'armoire « Process & Automate »

; ; ;				VAR	iateur (Po	ompe N°4)	Référer Vitess 4 - 20n	e j
; 	DI5 X530-2	P24 X540-5	DI1 x520-2	P24 X540-3	DI2 X520-3	P24 X540-4	AI0- X521-2	AI0+
[
								partie à compléter

Partie D

DREP8 : document réponse relatif à la question D.1

Remarque : pour le rendement d'une pompe en fonction de sa vitesse voir le **DTEC10**

Phase	Régime pompage	Etat Pompe (0 ou 1)	Vitesse pompe (tr/min)	Rendement de la pompe	Débit total (m³/h)
		P1=1			
1	Régime transitoire	P2=0			
		P1=			
2	Régime établi	P2=			
3	Régime transitoire				
		P1=			
4	Régime établi	P2=			
5	Régime transitoire				
		P1=			
6	Régime établi	P2=			