BREVET DE TECHNICIEN SUPÉRIEUR ÉLECTROTECHNIQUE

SESSION 2012 ÉPREUVE E4.2

AUGMENTATION DE LA PRODUCTIVITÉ D'UNE SUCRERIE

CORRIGÉ

Corrigé Page 1/9

Partie 1 : Choix du matériel nécessaire à la mise en œuvre de la moto-variation des centrifugeuses

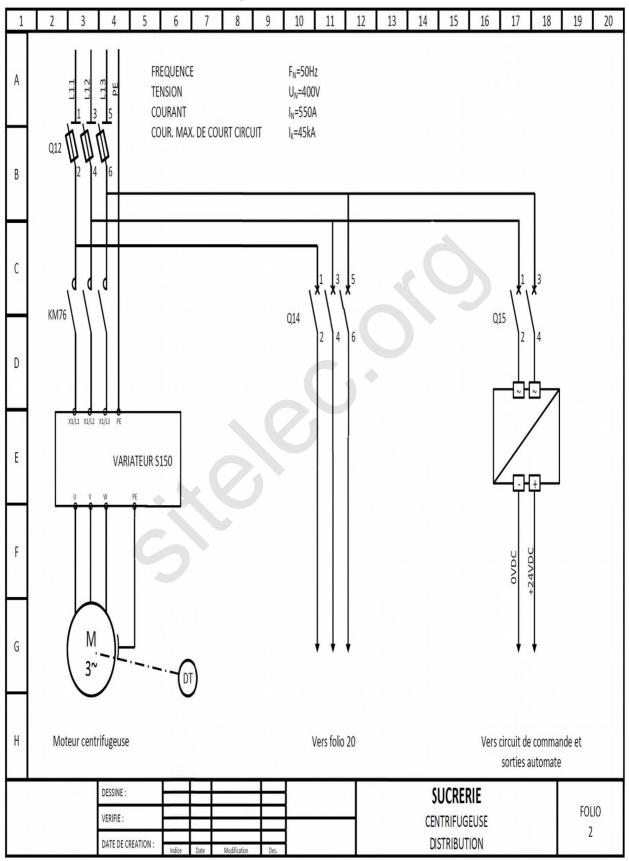
- Forme de construction du moteur: **IM V1 / IM 3011** code: **4** (page 2/17) (avec bride et capot de protection)
- 1.2 Référence complète du moteur: **1PQ8 357-8PB44** (page 3/17) (**4** → 400V et **4** → avec bride et capot de protection)
- 1.3 Vitesse maximum du cycle 980 $\text{tr} \cdot \text{min}^{-1}$ < 2500 $\text{tr} \cdot \text{min}^{-1}$ (page 4/17)
- 1.4 Fréquence maximale f_{max} : sachant qu'à 50 Hz la vitesse de rotation est 741 tr/mn (page 3/17) à 980 tr/mn, la fréquence est $f_{max} = 980 \times 50 / 741 =$ **66,12 Hz** Rapport $f_{max} / f_{nominale}$: 66,12 / 50 = **1,32**
- 1.5 Couple limite thermique à cette vitesse: $C / C_n = 0.75$ (courbe page 4/17)

 $C_{(66.12Hz)} = 4060 \text{ (page 3/17)} \times 0.75 = 3045 \text{ Nm}$

1.6 Couple thermique équivalent sur un cycle de fonctionnement (p 3/9 et 6/6):

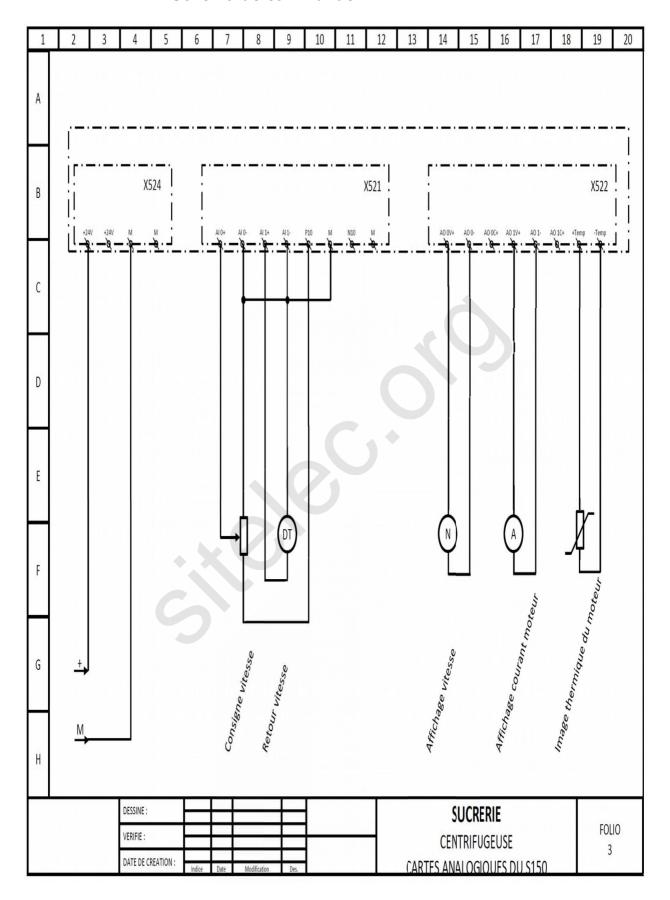
$$C_{theq} = \sqrt{\frac{1}{160}}(3020^2x5 + 340^2x20 + 4400^2x30 + 340^2x40 + 3740^2x30 + 340^2x35)$$

 $C_{theq} = 2570 Nm$

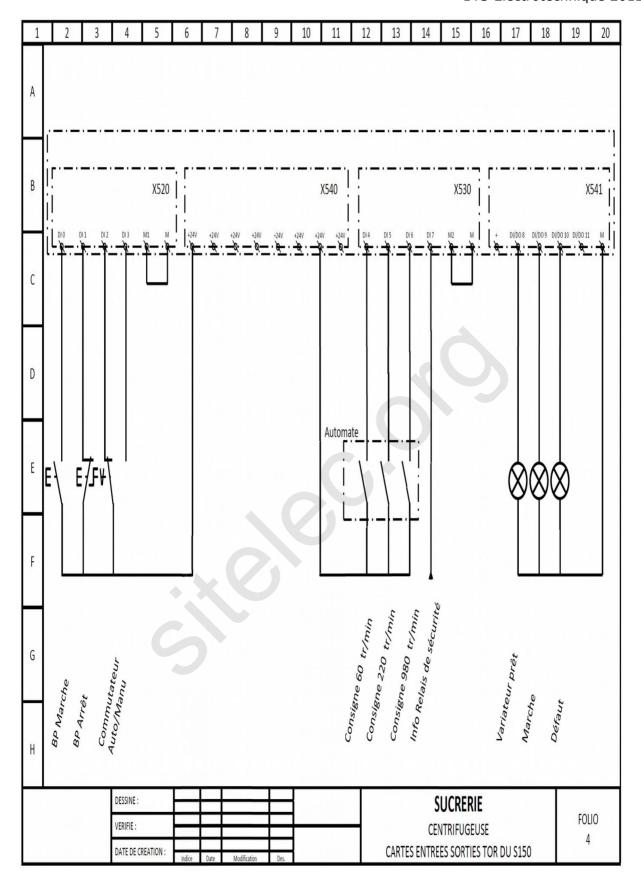

- 1.7 Justification:
 - vitesse maximale et nominale compatibles
 - couple nominal supérieur au couple thermique équivalent
 - couple maximal suffisant
- 1.8 Justification: amélioration du refroidissement aux basses vitesses
- 1.9 Référence du variateur: **6SL3710-7LE36-1AA0** (page 5/17)
- 1.10 Choix du câble:
 - $I_n = 580 A$
 - 2 câbles par phase : I_{cable}=290 A
 - Lettre F PVC3
 - K1 = 1; K2 = 1; K3 = 1,12; Kn = 1; $Ks = 1 \rightarrow K = 1,12$
 - $I_z = 290 / 1,12 = 259 A$
 - $S = 120 \text{ mm}^2 (299 \text{ A})$
- 1.11 Numéro d'article du câble: OLFLEX FD 90 CY 120 mm² → **0026665**
- 1.12 Référence des fusibles: **3NE1 438 2** (page 9/17)
- 1.13 Référence complète du variateur avec ses options (page 10/17) : 6SL3710-7LE36-1AA0 Z + L 60 + L83 + K50 + K82
- 1.14 Référence de l'afficheur à installer: **CA 2100-P** (page 11/17)

Corrigé Page 2/9

Partie 2 : Mise en œuvre de la motorisation des centrifugeuses


2.1. SCHÉMA DE CÂBLAGE

2.1.1. Schéma de puissance :



Corrigé Page 3/9

2.1.2. Schéma de commande :

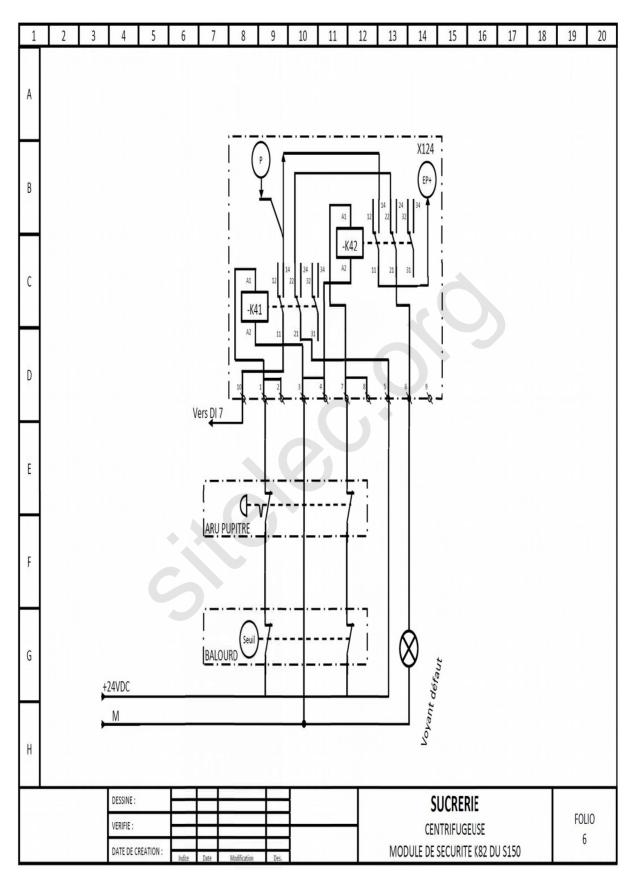
Corrigé Page 4/9

Corrigé Page 5/9

2.2. PARAMÉTRAGE DU VARIATEUR

Paramètre	Désignation	Unité	Valeur à régler
p0304	Tension assignée	V	400
p0305	Courant assigné	А	580
p0307	Puissance assignée	kW	315
p0308	Facteur de puissance assigné		0,82
p0309	Rendement assigné	%	96
p0310	Fréquence assignée	Hz	50
p0311	Vitesse de rotation nominale	tr∙min-1	741
p1082	Vitesse maximale	tr·min-1	980
p1001	Consigne vitesse 1	tr∙min-1	60
p1002	Consigne vitesse 2	tr∙min-1	220
p1003	Consigne vitesse 3	tr·min-1	980
p1120	Temps d'accélération	S	38,7
p1121	Temps de décélération	S	32

Détail du calcul du temps d'accélération: passage de 220 à 980 tr/mn en 30 s et passage de 0 à 980 tr/mn en \rightarrow ?? p1120 = 30 x 980 / (980 - 220) = 38,7 s


Détail du calcul du temps de décélération: passage de 980 à 60 tr/mn en 30 s et passage de 980 à 0 tr/mn en \rightarrow ?? p1121 = 30 x 980 / (980 - 60) = 32 s

2.3. GESTION DE LA SÉCURISATION

- 2.3.1. Analyse du risque: (page 5/9 et 14/17)
 - Gravité de la liaison S2 (lésions graves)
 - Fréquence F1 (assez rare)
 - Possibilité d'évitement P2 (difficile à éviter)
- 2.3.2. Catégorie requise du relais de sécurité: catégorie 2 ou 3 (page 14/17)
- 2.3.3. Fonction d'arrêt (catégorie 2) à utiliser: Safe Stop 2

Corrigé Page 6/9

2.3.4. Schéma de câblage du relais de sécurité:

Corrigé Page 7/9

Partie 3 : Mise en place de la communication

- 3.1. Référence du commutateur:
 - 8 ports TX (RJ45) pour les 6 variateurs
 - 1 port fibre FX pour la liaison au superviseur
 - réf. 943 958-111
- 3.2. Références des câbles:
 - liaison variateur switch: câble cuivre réf. R7072A
 - liaison switch superviseur: câble 4 fibres optiques réf. N6641
- 3.3. Paramètres de la communication Ethernet:

Par exemple: 192.168.11.3 à 192.168.11.8

Équipement	Adresse IP	Masque de sous réseau	
Centrifugeuse n°1	192.168.11.3	255.255.255.0	
Centrifugeuse n°2	192.168.11.4	255.255.255.0	
Centrifugeuse n°3	192.168.11.5	255.255.255.0	
Centrifugeuse n°4	192.168.11.6	255.255.255.0	
Centrifugeuse n°5	192.168.11.7	255.255.255.0	
Centrifugeuse n°6	192.168.11.8	255.255.255.0	

Corrigé Page 8/9

Partie 4 : Étude économique de la solution

4.1. CALCUL DE L'INVESTISSEMENT

4.1.1. Calcul du coût du matériel :

Coût câble : 66,58 x 50 x 2 x 3 = 19 974 €

Coût matériel : 39 172 + 52 826 + 2 000 + 5 000 = 98 998 €

Coût total : 19 974 + 98 998 = 118 972 €

4.1.2. Calcul du coût de la main d'œuvre :

200h x 29 € = 5 800 € HT

4.1.3. Coût total de l'installation pour une centrifugeuse :

118 972 + 5 800 = 124 772 € HT

Désignation	Prix unitaire	Quantité	Coût HT
Câble liaison moteur - variateur	66,58 €.ml ⁻¹	3 x 2 x 50 ml	19 974,00 €
Matériels (moteur, variateur, divers) + mise en service			98 998 €
Main d'œuvre	29 €.h ⁻¹	200 h	5 800 €
Coût total installation			124 772,00 €

4.2. CALCUL DU GAIN ESTIME

4.2.1. Calcul du rendement de la transformation 120 000 / 700 000 = 17,14%

4.2.2. Calcul de la masse de betteraves traitées $12\ 000 \times 70 = 840\ 000\ t$

4.2.3. Calcul de la quantité de sucre supplémentaire produit (840 000 - 700 000) x 120 000 / 700 000 = 24 000 t

4.2.4. Calcul du chiffre d'affaire 24 000 x 335 = 8 040 000 €

4.3. BILAN ÉCONOMIQUE

4.3.1. Calcul du surcoût d'achat des betteraves 2 000 x 38 x 70 = 5 320 000 € HT

4.3.2. Calcul du surcoût de l'énergie 24 000 x 0,124 x 850 = 2 529 600 € HT

4.3.3. Calcul du temps de retour sur investissement

Investissement pour 6 centrifugeuses = $124772 \times 6 = 748632$ € Gain annuel = 8040000 - 2529600 - 5320000 = 190000 € T.R.I. = 748632 / 190000 = 3,94 soit 4 ans

Corrigé Page 9/9