BTS Groupement A – Mathématiques

Éléments de correction

Session 2011

Exercice 1:

Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

Partie A: QCM

Les bonnes réponses sont :

1.
$$f(t) = 10 (\mathcal{U}(t) - \mathcal{U}(t-1))$$

2.
$$S(p) = \frac{1}{1+0,005p}V(p)$$

3.
$$s(t) = ke^{-200t} + 2$$

Partie B: Simulation numérique

1. Comme $T_e=0,5.10^{-3}$ alors $\frac{0,005}{T_e}=10,$ l'équation devient alors :

$$10 (y(n) - y(n-1)) + y(n) = x(n)$$

 $\iff 11y(n) - 10y(n-1) = x(n)$

2. (a) On a, sachant que x(n) = 2e(n), en prenant la transformée en Z de l'équation précédente :

$$11Y(z) - 10 \left(\mathcal{Z}y(n-1) \right) (z) = 2 \left(\mathcal{Z}e(n) \right) (z)$$
$$11Y(z) - 10z^{-1}Y(z) = 2\frac{z}{z-1}$$
$$\left(11 - \frac{10}{z} \right) Y(z) = \frac{2z}{z-1}$$
$$11 \left(z - \frac{10}{11} \right) \frac{Y(z)}{z} = \frac{2z}{z-1}$$
$$\frac{Y(z)}{z} = \frac{2}{11} \times \frac{2z}{(z-1)\left(z - \frac{10}{11}\right)}$$

(b) Une réduction au même dénominateur est nécessaire afin de montrer que

$$\frac{2}{11} \left(\frac{11z}{z-1} - \frac{10z}{z - \frac{10}{11}} \right) = \frac{2}{11} \times \frac{z^2}{(z-1) \left(z - \frac{10}{11}\right)} = Y(z)$$

(c) Par développement et simplification de l'expression précédente, on obtient :

$$Y(z) = 2 \times \frac{z}{z - 1} - 2 \times \frac{10}{11} \times \frac{z}{z - \frac{10}{11}}$$

3. (a) Par lecture inverse de la table des transformées en Z, on obtient :

$$y(n) = 2e(n) - 2 \times \frac{10}{11} \times \left(\frac{10}{11}\right)^n e(n)$$
$$= 2e(n) - 2 \times \left(\frac{10}{11}\right)^{n+1} e(n)$$

(b) Comme $\left(\frac{10}{11}\right)^{n+1}$ est une suite géométrique de raison $\frac{10}{11} \in]-1;1[$ alors $\lim_{n \to +\infty} \left(\frac{10}{11}\right)^{n+1} = 0$ d'où $\lim_{n \to +\infty} y(n) = 2$

1

Partie C:

- 1. Voir table 1 du document réponse numéro 1.
- 2. Voir figure 1 du document réponse numéro 1.

Exercice 1:

Spécialités Électrotechnique – Génie optique

Partie A:

Les bonnes réponses sont :

- 1. La probabilité de l'événement E_1 est égale 0,01.
- 2. Si l'événement E_2 est réalisé, le signal reçu est 10.
- 3. La probabilité de l'événement E_2 est égale à 0,09.
- 4. La probabilité de l'événement E_3 est égale à 0,81.
- 5. La probabilité de l'événement E_4 est égale à 0, 19.

Partie B:

- 1. (a) X suit la loi binomiale de paramètres n=10 et p=0,1.
 - (b) On demande p(X = 1), c'est-à-dire

$$p(X = 1) = C_{10}^{1} 0, 1^{1} \times 0, 9^{9}$$

$$= 10 \times 0, 1^{1} \times 0, 9^{9}$$

$$= 0, 9^{9}$$

$$\approx 0, 387$$

(c) On demande $p(X \leq 1)$.

$$\begin{split} p(X \leqslant 1) &= p(X=0) + p(X=1) \\ &= \mathrm{C}_{10}^0 \, 0, 1^0 \times 0, 9^{10} + p(X=1) \\ &= 0, 9^{10} + p(X=1) \\ &\approx 0,736 \\ &\approx 0,74 \ \mathrm{\grave{a}} \ 0,01 \ \mathrm{pr\grave{e}s} \end{split}$$

- 2. (a) La variable aléatoire Y suit une loi binomiale de paramètres n=1000 et p=0,002. Par conséquent, par approximation de cette loi binomiale par une loi de Poisson, l'espérance est conservée. Pour une loi binomiale, l'espérance est égale à np, qui est égale au paramètre λ de la loi de Poisson. On a alors ici : $\lambda=0,002\times1000=2$.
 - (b) On demande $p(Y \ge 1)$.

$$\begin{split} p(Y\geqslant 1) &= 1 - p(Y=0) \\ &\approx 1 - 0,135 \\ &\approx 0,865 \text{ à } 0,001 \text{ près} \end{split}$$

Partie C:

- 1. (a) Pour avoir un chiffre 1, il faut que $4+U \ge 2$, c'est-à-dire $U \ge -2$.
 - (b) Comme U suit la loi normale $\mathcal{N}(0;0,7)$ alors $T = \frac{U}{0,7}$ suit $\mathcal{N}(0;1)$.

$$p(U \geqslant -2) = p\left(T \geqslant -\frac{2}{0,7}\right)$$
$$= p(T \geqslant -2,857)$$
$$= p(T \leqslant 2,857)$$
$$\approx 0.998$$

2. Comme U suit la loi normale $\mathcal{N}\left(0\,;\sigma\right)$ alors $T=\frac{U}{\sigma}$ suit $\mathcal{N}\left(0\,;1\right)$.

On a

$$\begin{split} p(U<-2) &= p\left(T<-\frac{2}{\sigma}\right) \\ &= p\left(T>\frac{2}{\sigma}\right) \\ &= 1-p\left(T<\frac{2}{\sigma}\right) \end{split}$$

Il faut alors résoudre l'inéquation

$$p(U < -2) < 0,001$$
$$1 - p\left(T < \frac{2}{\sigma}\right) < 0,001$$
$$0,999 < p\left(T < \frac{2}{\sigma}\right)$$

c'est-à-dire, d'après la table de la loi normale,

$$\frac{2}{\sigma} \geqslant 3, 1$$
$$\sigma \leqslant 0,645$$

Exercice 2:

Toutes spécialités

Partie A:

- 1. Voir figure 2 du document réponse.
- 2. On a

$$a_0 = \frac{1}{2} \int_{-1}^{1} f(t) dt$$

$$= \frac{1}{2} \int_{-1}^{1} 0, 5(t-1) dt$$

$$= \frac{1}{4} \left[\frac{1}{2} t^2 + t \right]_{-1}^{1}$$

$$= \frac{1}{4} \times 2$$

$$= \frac{1}{2}$$

3. (a) On a

$$\omega = \frac{2\pi}{T}$$
$$= \frac{2\pi}{2}$$
$$= \pi$$

(b) On a, pour $n \ge 1$:

$$b_1 = \frac{2}{T} \int_{-1}^{1} f(t) \sin(n\omega t) dt$$
$$= \frac{2}{2} \int_{-1}^{1} 0, 5(t-1) \sin(\pi t) dt$$
$$= \frac{1}{2} \int_{-1}^{1} (t-1) \sin(\pi t) dt$$

On procède à une intégration par parties en posant

$$\begin{cases} u(t) = t+1 \\ v'(t) = \sin \pi t \end{cases} \qquad \begin{cases} u(t) = 1 \\ v(t) = -\frac{1}{\pi} \cos \pi t \end{cases}$$

d'où

$$\int_{-1}^{1} (t-1)\sin(\pi t) dt = \left[-\frac{1}{\pi} (t+1)\cos \pi t \right]_{-1}^{1} + \frac{1}{\pi} \int_{-1}^{1} \cos \pi t dt$$
$$= -\frac{2}{\pi} \cos \pi + \frac{1}{\pi^{2}} \left[\sin \pi t \right]_{-1}^{1}$$
$$= \frac{2}{\pi}$$

En remplaçant, on obtient alors

$$b_1 = \frac{1}{\pi}$$

- 4. (a) On a, pour tout nombre réel $t \in]-1;1[, g(t) = 0,5t]$. Pour la représentation graphique, voir figure 3 du document réponse.
 - (b) Comme la fonction g est impaire, la courbe représentative de la fonction g est symétrique par rapport à l'origine du repère.

(c) La fonction g étant impaire, pour tout entier naturel n, les coefficients de Fourier $a_n(g)$ sont nuls. Or, on a, pour $n \ge 1$:

$$a_n(g) = \frac{2}{T} \int_{-1}^1 g(t) \cos n\pi t \, dt$$

$$= \frac{2}{T} \int_{-1}^1 (f(t) - 0, 5) \cos n\pi t \, dt$$

$$= \frac{2}{T} \int_{-1}^1 f(t) \cos n\pi t \, dt - 0, 5 \times \frac{2}{T} \int_{-1}^1 \cos n\pi t \, dt$$

$$= a_n(f) - \frac{1}{T} \left[\frac{1}{n\pi} \sin(n\pi t) \right]_{-1}^1$$

$$= a_n(f)$$

D'où, pour tout entier naturel $n \ge 1$, $a_n = 0$.

5. On a
$$f^2(t) = \frac{1}{4}(t+1)^2$$
, d'où

$$f_{eff}^{2} = \frac{1}{2} \int_{-1}^{1} (f(t))^{2} dt$$

$$= \frac{1}{8} \int_{-1}^{1} (t+1)^{2} dt$$

$$= \frac{1}{8} \left[\frac{1}{3} (t+1)^{3} \right]_{-1}^{1}$$

$$= \frac{1}{8} \times \frac{1}{3} \times 2^{3}$$

$$= \frac{1}{3}$$

6. (a) On a

$$P = \frac{1}{4} + \frac{1}{2\pi^2} \sum_{k=1}^{5} \frac{1}{k^2}$$
$$= \frac{1}{4} + \frac{1}{2\pi^2} \frac{5269}{3600}$$
$$\approx 0,324$$

D'où

$$\frac{P}{f_{eff}^2} \approx 0,972$$

(b) L'erreur commise est

$$\frac{f_{eff}^2 - P}{f_{eff}^2} = 1 - \frac{P}{f_{eff}^2}$$
$$\approx 0.028$$
$$\approx 2.8\%$$

Partie B:

Remarque : Cette question est mal posée, car il manque l'essentiel, à savoir que la fonction h vérifie les conditions de Dirichlet afin de s'assurer de la convergence de la série de Fourier vers la fonction h régularisée. Ici, nous allons donc supposer que c'est bien le cas...

- 1. La série de Fourier ne comportant que des cos, par conséquent, la fonction h est paire.
- 2. Grâce à la parité de la fonction h, la courbe représentative admet l'axe des ordonnées comme axe de symétrie, par conséquent, nous pouvons déjà éliminer les courbes 1 et 4.

La fonction h est périodique de période 2 donc nous pouvons maintenant éliminer la courbe 3 qui représente une fonction périodique de période 1.

3. Par lecture graphique, nous avons $h(t) = \pi t$ sur l'intervalle [0;1].

Grâce à cette expression, nous avons donc que la fonction h est continue sur \mathbf{R} , de classe \mathcal{C}^1 par morceaux, par conséquent, à l'aide du théorème de Dirichlet, la série de Fourier de h converge en tout point de \mathbf{R} vers la fonction h.

Document réponse numéro 1 à joindre avec la copie

n	0	1	2	3	4	5	6	7	8	9	10
y(n)	0, 18	0,35	0,50	0,63	0,76	0,87	0,97	1,07	1,15	1,23	1,30

Table 1 – Tableau de valeur de la suite y

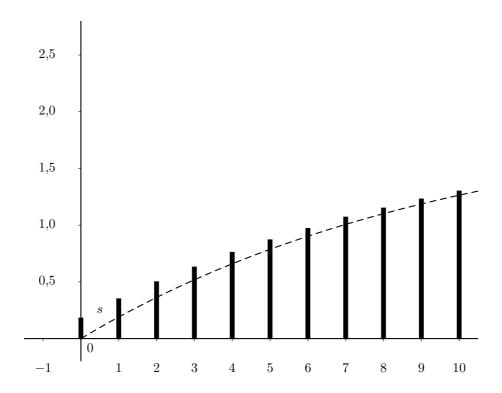


FIGURE 1 – Signal numérique y

Document réponse numéro 2 à joindre à la copie

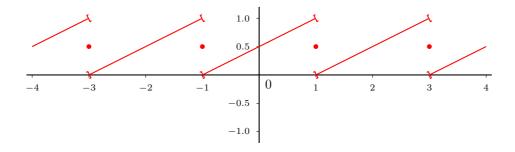


Figure 2 – représentation graphique de la fonction f

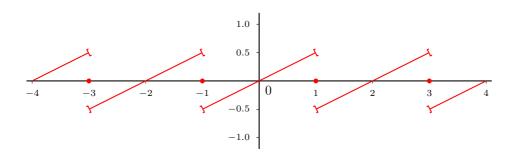


FIGURE 3 – représentation graphique de la fonction g

 $Suggestions \ ou \ remarques: xavier.tisserand@ac\text{-poitiers.fr}$