Page : 1/ Coefficient 4

ELECTRICITE (durée conseillée : 1h30) 8 points

Cet exercice est constitué de quatre parties indépendantes.

Les documents-réponses doivent impérativement (même vierges) être joints àla copie.

LES RESULTATS DES APPLICATIONS NUMERIQUES SERONT DONNES AVEC DEUX OU TROIS CHIFFRES SIGNIFICATIFS.

ETUDE D'UN VISCOSIMETRE

La partie mobile d'un viscosimètre est entraînée à fréquence de rotation variable notée n par un moteur à courant continu. A des fins d'analyse, cette fréquence de rotation est traduite sous forme d'une tension quasi-continue v_s à l'aide d'un dispositif constitué par un disque troué associé à un photodétecteur (fourche optique), un monostable et un filtre (cf. fig. 1).

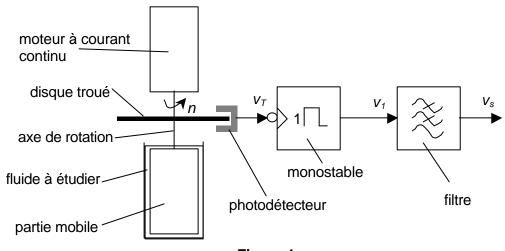


Figure 1.

1. ETUDE DU MOTEUR A COURANT CONTINU

La f.é.m. du moteur à aimant permanent (flux constant) est liée à sa fréquence de rotation par la relation : $E_{(V)} = 3,5.10^{-3}.n_{(tr/min)}$. Cette expression est valable que le moteur soit à vide ou en charge.

La résistance r de l'induit du moteur vaut 0,33 Ω .

Les pertes magnétiques et mécaniques développent un couple résistant de moment supposé constant : $T_D = 0.02 \text{ N.m.}$

Le mobile du viscosimètre développe un couple résistant (égal au couple utile développé par le moteur en régime permanent) de moment T_u variant de 0 à 0,28 N.m selon la fréquence de rotation et la viscosité du fluide à étudier.

Page: 2/ Coefficient 4

1.1. Faire un schéma électrique équivalent représentant l'induit du moteur en y faisant figurer la tension *U* à ses bornes, la f.é.m. *E*, l'intensité *I* du courant absorbé par l'induit de résistance *r*. Préciser la relation liant alors *U*, *E*, *r* et *I*.

1.2. Le moteur tournant à vide :

- 1.2.1. Exprimer la puissance électromagnétique P_{em0} développée par le moteur en fonction de T_p et de la fréquence de rotation à vide n_0 (en tr/min).
- 1.2.2. Exprimer cette même puissance en fonction de la f.é.m. E_0 et de l'intensité I_0 du courant absorbé par l'induit.
 - 1.2.3. En déduire la valeur de I_0 .
- 1.3. On note I_{max} l'intensité du courant absorbé par l'induit du moteur lorsque celui-ci développe son couple maximal. Monter que I_{max} vaut 9 A.
- 1.4. En déduire la tension U_{max} qu'il faut appliquer au moteur pour qu'il tourne, à pleine charge, à la fréquence de rotation $n_{max} = 6000$ tr/min.
 - 1.5. Calculer le rendement du moteur développant son couple maximal à 6000 tr/min.

2. ETUDE DU PHOTODETECTEUR

Un photodétecteur à transmission (fourche optique) CNY29 est installé à proximité d'un disque solidaire du rotor du moteur et percé de dix trous équidistants à sa périphérie (un angle au centre de 36° sépare donc deux trous consécutifs).

L'entrée (diode électroluminescente) et la sortie (phototransistor) du photodétecteur sont respectivement reliées à une même source de tension V_{CC} = + 5 V par deux résistances R_F (à déterminer) et R_L = 1 k Ω (cf. fig.2).

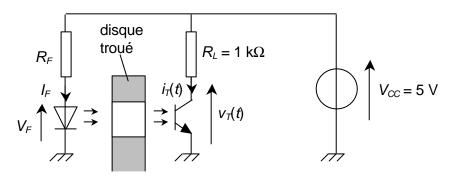


Figure 2.

- 2.1. Calculer la tension v_{Tsat} aux bornes du phototransistor lorsque celui-ci est saturé (photodétecteur en face d'un trou) sachant que l'intensité i_T est alors maximale et vaut 4 mA.
- 2.2. A l'aide de la figure A du document-réponse n°1, rechercher la valeur minimale I_{Fmin} de l'intensité I_F pour que le phototransistor soit sûrement saturé au passage d'un trou devant le photodétecteur.
- 2.3. La puissance dissipée par la diode électroluminescente (LED) doit rester inférieure à 100 mW.

Sachant que la tension directe V_F aux bornes de la diode électroluminescente est égale à 1,7 V lorsque $I_F > 0$, calculer l'intensité maximale I_{Fmax} , pouvant traverser cette diode.

Page: 3/

2.4. Sur le document-réponse n° 1, hachurer le domaine des fonctionnements possibles du photodétecteur.

2.5. Déterminer le domaine des valeurs théoriques possibles de R_F (valeur maximale et valeur minimale).

3. ETUDE DU MONOSTABLE

La tension de sortie $v_1(t)$ du monostable est nulle lorsqu'il est au repos (à l'état stable). Le monostable considéré n'est pas redéclenchable.

3.1. Que signifie le symbole représenté figure 3 ?

Figure 3.

3.2. A partir des chronogrammes de la figure B du document-réponse n°2 :

3.2.1. Déterminer la période propre T_0 (durée de l'état instable) du monostable.

3.2.2. Déterminer la fréquence f de la tension $v_1(t)$. En déduire, en tr/s, la fréquence de rotation n_A du disque.

RAPPEL : Le disque est percé de 10 trous.

3.2.3. Pour T > 1 ms, exprimer en volts la valeur moyenne $< v_1 >$ de $v_1(t)$ en fonction de T puis de n en tr/s.

3.3. La figure C du document-réponse n°2 représente la tension $v_T(t)$ à l'entrée du monostable pour une fréquence de rotation n_B (non demandée) supérieure à n_A .

La valeur de T_0 étant inchangée, tracer l'allure de la tension $v_1(t)$ en correspondance avec la tension $v_T(t)$.

NOTA: Les échelles de temps des figures B et C sont différentes.

3.4. A quelle condition, portant sur la période de $v_1(t)$, la mesure de la fréquence de rotation du disque est-elle fiable ?

Page: 4/ Coefficient 4

4. ETUDE DU FILTRE

La tension $v_1(t)$ est appliquée à l'entrée d'un filtre dont le diagramme de Bode est partiellement représenté figure 4.

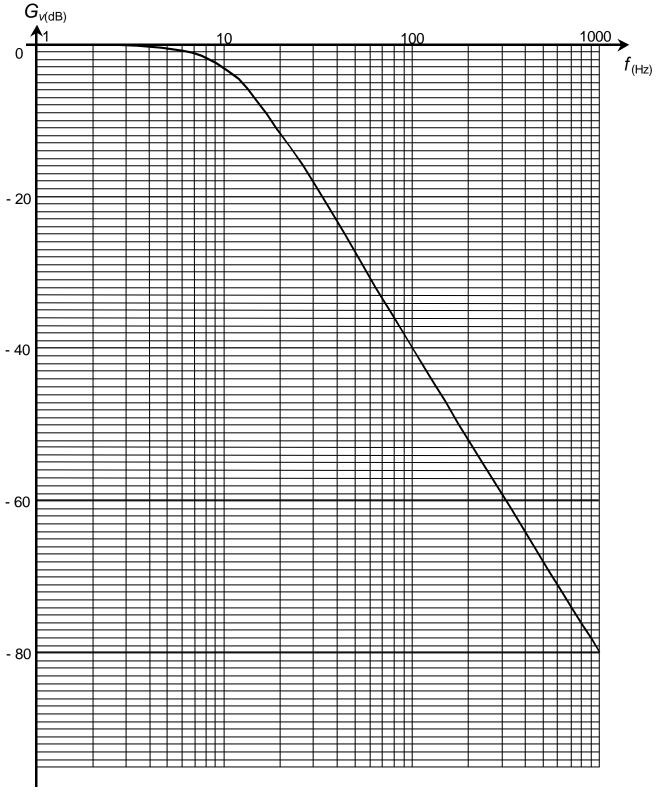


Figure 4.

Page : 5/ Coefficient 4

- 4.1. Qualifier précisément ce filtre (nature, fréquence de coupure à − 3 dB, ordre).
- 4.2. Pour une fréquence de rotation particulière, la tension $v_1(t)$ possède la décomposition en série de Fourier suivante :

$$v_1(t) = 2.5 + \frac{10}{\mathbf{p}} \sum_{k=0}^{\infty} \frac{1}{(2k+1)} \sin[(2k+1).1000\mathbf{p}t]$$

 v_1 étant exprimée en volts et t en secondes.

- 4.2.1. Quelle relation existe-t-il entre la fréquence de $v_1(t)$ et la fréquence du fondamental de $v_1(t)$? Calculer numériquement la fréquence de $v_1(t)$.
 - 4.2.2. Préciser sa valeur moyenne.
- 4.2.3. En utilisant le diagramme de la figure 4, déterminer la valeur moyenne de la tension $v_s(t)$ puis l'amplitude du fondamental de $v_s(t)$ lorsque la tension $v_t(t)$ de la question 4.2. est appliquée à son entrée.
 - 4.2.4. Un tel filtrage vous paraît-il suffisant?

DOCUMENT-REPONSE N°1 (à rendre obligatoirement avec votre copie)

De la notice du constructeur du CNY 29, on a extrait la caractéristique $I_T = f(I_F)$ suivante, tracée pour un fonctionnement linéaire du phototransistor :

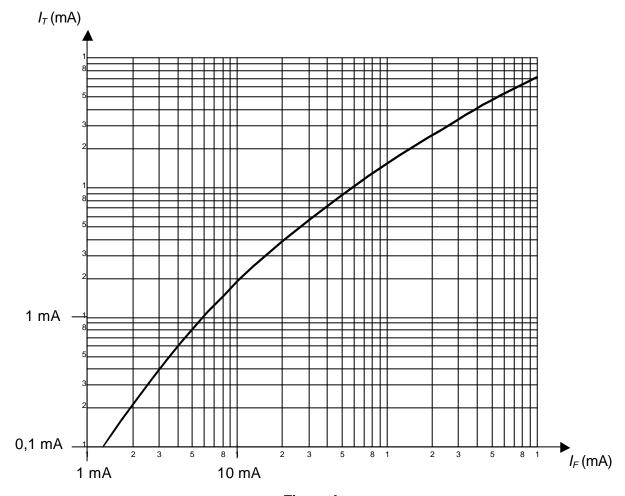
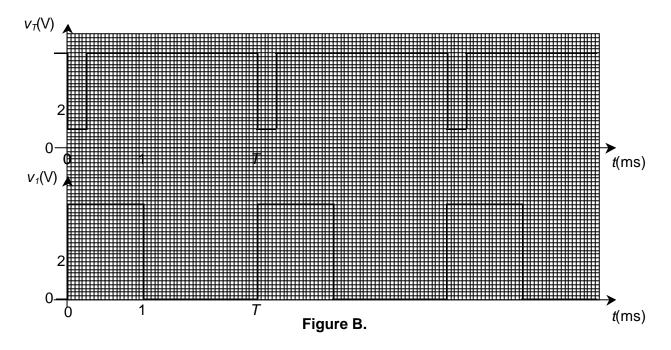
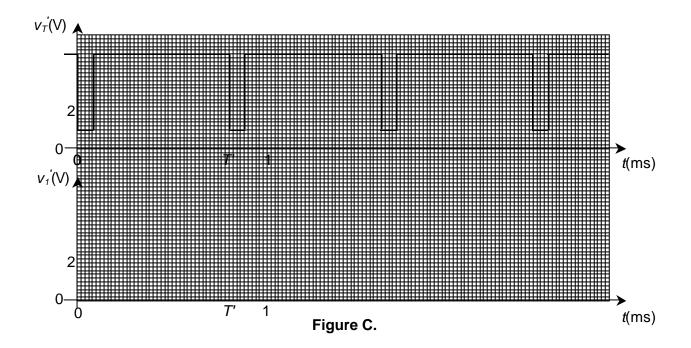




Figure A.

Page: 7/ Coefficient 4

DOCUMENT-REPONSE N°2 (à rendre obligatoirement avec votre copie)

