CONCOURS GENERAL DES LYCEES

SESSION DE 2018

COMPOSITION DE MATHEMATIQUES

(Classe terminale S)

DUREE : 5 HEURES

La calculatrice est autorisée conformément a la réglementation.
La clarté et la précision de la rédaction seront prises en compte dans 'appréciation de la copie.

Le sujet comporte trois problemes indépendants et 7 pages numérotées 1 a 7.
Le candidat peut traiter les questions dans l'ordre de son choix, a condition de l'indiquer clairement dans la
copie.



PROBLEME I

Approximations de courbes

Partie A : Les polyndmes de Bernstein

Pour tout entier naturel n et pour tout entier naturel i compris entre 0 et n, on note B ; le polyndome
défini pour p variant dans l'intervalle [0; 1] par

Bni(p) = ('Z)p"(l -p",

n
avec | .
i

Ces polynomes sont appelés polynomes de Bernstein.

) le coefficient binomial, i parmi 7. Ainsi B o(p) =1;B1,0(p) =1—p et By,1(p) = p.

1° (a) Donner I'expression de By (p), B2,1(p) et B2 2(p).
(b) Déterminer |'expression des polynémes de Bernstein pour n = 3, a savoir B3 o(p), B3,1(p), B3 2(p)
et B33(p).
2° (@) Quelle est I'expression de B, o(p) et de By, ,(p)?

(b) Démontrer que pour tout n =1 et pour tout i compris entre 1 et n—1,
Bp,i(p) = (1= p)By-1,i(p) + pBp-1,i-1(p).

3° (a) En quelle(s) valeur(s) p € [0; 1] s’annule un polynéme de Bernstein ?
On raisonnera en distinguant les cas selon les valeurs de n et de i.

(b) Qu’en est-il de son signe sur [0; 1] ?

4° Démontrer que les polyndmes de Bernstein d'un méme degré n forment une partition de 'unité :
c’est-a dire, pour tout entier naturel 7,

n
Y Bpn,i(p) = Buo(p) +Bpi(p) +...+ By n_1(p) + Bpn(p) = 1.
i=0

5° Déterminer la valeur des sommes

n n

iBui(p) et Y i*Byi(p).
0 i=0

1

Que représentent ces sommes en termes probabilistes ?

Partie B : Des courbes de Bézier

On munit le plan d'un repére orthonormé (O, I, /). Soit n un entier naturel. On se donne n + 1 points non
alignés du plan Py, Py, ..., Py_1, Py.

On appelle courbe de Bézier de degré n et de points de contréle Py, Py,...,P,_1, P, I'ensemble des points
M(p) du plan avec p variant dans l'intervalle [0; 1] tels que

—_— n —_—
OM(p)=)_ Byi(p)OP;.
i=0

Dans la suite on va s'intéresser a des courbes de Bézier de degré 0,1 ou 2.
On se fixe donc A, B, C trois points du plan non alignés.



1° Reconnaitre la nature géométrique

(a) dela courbe de Bézier de degré 0 et de point de contrdle A.

(b) de la courbe de Bézier de degré 1 et de points de controle B et C.

2° On s’'intéresse a la courbe de Bézier de degré 2 et de points de controle A, B et C.

(a) Justifier que les points A et C appartiennent a cette courbe. Le point B y appartient-il ?

(b) Dans cette question on prend les points de coordonnées A(—2;5), B(2;1) et C(4;3). Proposer

1 1
une construction des points de cette courbe pour p = 7 p= 3 etp= T Tracer la courbe a
main levée.

3° Démontrer que cette courbe est nécessairement inscrite dans le triangle ABC.

4° Quelle pourrait étre la nature géométrique de cette courbe de Bézier de degré 2 ? Justifier votre ré-
ponse.

PROBLEME II

Un si discret Monsieur Dirichlet

Soit . un ensemble fini non vide de points du plan. Certaines paires de points de . sont reliées par
des traits, de sorte qu’en suivant ces traits, éventuellement en plusieurs étapes, il est toujours possible de
passer d'un point de . a n'importe quel autre (les intersections éventuelles entre les traits ne sont pas
considérées et un point n’est jamais relié a lui-méme).

Deux points de . reliés par un trait sont dits voisins.

Si M est un point de .¥/, on note V(M) I’ensemble des voisins de M, et on note d(M) le nombre de voisins
de M, appelé le degré de M.

Chaque point de .# a été colorié soit en bleu soit en jaune, et il y a au moins un point jaune dans 'en-
semble .#. A chaque point jaune, Gustav a attribué un nombre réel de son choix. La mathématicienne
Maryam voudrait alors attribuer un réel a chaque point bleu (pas forcément le méme nombre d'un point
bleu a I'autre) de facon a satisfaire la propriété (£2) suivante :

(??) Le nombre attribué a tout point bleu est la moyenne des nombres attribués a ses voisins.
Partie A : Quelques exemples pour commencer

1° Dans cette question uniquement, on suppose que . = {4, B, C}, avec A voisin de B, lui-méme voisin
de C comme sur dessin ci-dessous.
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De plus, A est le seul point jaune et Gustav lui a attribué le réel a.
Quels nombres Maryam doit-elle alors attribuer a B et a C afin de satisfaire la propriété (£2)?

2° Pour les trois questions suivantes on suppose que . ={A, B,C, D, E}. Les points A et E sont les seuls
points jaunes, et Gustav leur a attribué respectivement les réels a et e.



(a) Les liaisons étant indiquées selon le schéma suivant, quels nombres Maryam doit-elle alors
attribuer a chacun des points B, C et D afin de satisfaire la propriété (22) ?

A B C D E

fe rY Py Py rs)

a e

(b) Méme question pour le schéma suivant :

D eE
a D

A B

(c) Méme question pour le schéma suivant :
A
a
E B
D C

3° Dans cette question uniquement on généralise le schéma de la question 2-(c) avec un nombre quel-
conque de points.

On suppose que n = 1 est un entier, que & = {Py, P1, P»,...,P,, Py+1} et que tout point de # est
voisin de chaque autre point de .%. De plus, Py et P, sont les seuls points jaunes, et Gustav leur
a attribué respectivement les réels a et b. Quels nombres Maryam doit-elle alors attribuer a chacun
des points P; pour i = 1,..., n afin de satisfaire la propriété (£?) ?

Partie B : Etude du cas général

On note respectivement _¢ ’ensemble des points jaunes, et 98 'ensemble des points bleus. Ainsi
S =FUB.

Quand Gustav attribue un réel & chaque point jaune, cela consiste a définir une fonction k de _¢ dans R.

Lobjectif de Maryam est donc de construire une fonction f:.% — R telle que

f(M) = k(M) si M est jaune (1)

o = LB +.L.i.+f(Pd)

ol d = d(M) est le degré de M (qui dépend de M) et Py, ..., P4 les voisins de M.

si M est bleu (2)

On dira alors que f est une solution pour Uattribution k.
Dans cette partie, on suppose donc donnée une telle attribution k.

On note K le plus grand des nombres k(M) lorsque M décrit I'ensemble _¢.



Existence d’'une solution.

1° On suppose dans cette question que k(M) = 0 pour tout point M € _¢. On construit alors, par récur-
rence, la suite (f;;) de fonctions suivante :

On pose fo(M) = k(M) si M est jaune, et fo(M) =0 si M est bleu.

Puis, pour tout entier n = 0, on pose

frne1(M) = k(M) si M est jaune,

(P + ...+ (P
Fronay = 1P - fn(Pa)

ol d = d(M) est le degré de M (qui dépend de M) et Py,..., P4 les voisins de M.

si M est bleu,

(a) Prouver que, pour tout n =0 et tout point M€ %, ona0< f,(M) < f,+1(M) <K.

(b) En déduire I'existence d'une solution pour l'attribution k.

2° Prouver que si f est une solution pour l'attribution k et si a est une constante, alors la fonction f+a
est aussi une solution pour l'attribution k + a.

3° En déduire qu'il existe une solution a notre probléme en général, c’est-a-dire sans ’hypothese de la
question 1°: k(M) = 0 pour tout point M € _#.

Unicité de la solution.

On suppose dans cette sous-partie que 1'on dispose d'une solution f pour cette attribution k.

4° Prouver que, pour tout point M € #, on a f(M) < K.

5° Supposons que g soit également une solution pour l'attribution k.

(a) Justifier que la fonction f — g vérifie la condition (2).
(b) Que vaut f—gsur ¢?
(c) En déduire que f=g.

6° Que peut-on dire de f s’il n'y a qu'un seul point jaune ?



PROBLEME III

Les nombres en or

On note ¢ la plus grande racine réelle de 'équation x* = x + 1. Le nombre ¢, connu depuis 'Antiquité, est
appelé nombre d’'or. Un réel x est dit un nombre en or s'il existe :

— deux entiers naturels p et g

— des entiers ap, ap-1, -+, ao, ..., d—q Ne prenant que les valeurs 0 ou 1 tels que

_ -1 -1 -
x=appP +a,_ 1P +.rap+apg+ap + - +a_qp .

Dans ce cas, on notera x > apdp—1 -+ do,d-1"** —q.

1 1
Par exemple si x = @ + @+ 1+ a + E’ on notera x > 1101,1001. On dira que alors 1101,1001 est une

représentation en or de x.
Il est clair que I'on peut ajouter, au début, ou la fin de la représentation autant de 0 que I'on souhaite.

Une séquence de la représentation est une suite de 0 et de 1 qui apparait dans la représentation. Dans
I'exemple précédent, 10110 est une séquence de la représentation 1101,1001.

Partie A : Tous les entiers naturels sont en or

1° Montrer que, dans la représentation en or de x, on peut remplacer toute séquence 011 par 100 et
réciproquement afin d’obtenir une autre représentation en or de x.

Par exemple le réel dont la représentation en or est 1101,1001 admet également 1110,0001 et 1101,0111
comme représentation en or .

On dira que les deux séquences 011 et 100 sont équivalentes.

2° Plus généralement, donner une séquence dans laquelle il n'y a jamais deux 1 consécutifs et qui soit
équivalente a 011---1 out il y a n occurrences du chiffre 1.

3° Montrer que les entiers 2 et 3 sont des nombres en or et en donner une représentation en or.

4° Montrer que tous les entiers naturels admettent une représentation en or.

Partie B : Représentation en or pur

On dira qu’'une représentation x > apay-1 -+ dp, d-1 -+ d-4 d'un nombre en or est en or pur si pour tout i,
a;ai+1 =0.
En d’autres termes, une représentation de x est en or pur si elle ne contient jamais deux 1 consécutifs.

Soit x un réel non nul, si x > apay-1---ap,a-1---a-4, on définit la teneur en or de la représentation
comme étant égale a 'exposant de la plus grande puissance de ¢ dont le coefficient vaut 1, dans 1'éga-
lité x = appP +...---+a_qp™ 7.

Par exemple la teneur de la représentation 1101,1001 est égale a 3 et celle de 0,0010 est égale a —3.
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Donner une représentation en or pur des entiers 2, 3, 4 et 5.

Soit x un réel ayant une représentation en or pur de teneur en or égale a n.

(a) Montrer que
(pn <x< (pn+1'

(b) Montrer que la représentation en or pur d'un réel, si elle existe, est unique.

Soit x un réel non nul ayant une représentation en or pur.

(a) Exprimer la teneur en or de la représentation en or pur de x a I'aide des fonctions logarithme
népérien et partie entiere.

(b) Ecrire un algorithme permettant de déterminer cette représentation.

(c) Appliquer votre algorithme pour x = 2018.
Montrer qu'un réel en or posséde forcément une représentation en or pur.

Montrer qu’il existe des réels strictement positifs qui ne sont pas en or.





